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SUMMARY I

The following report, based on the Ph.D. dissertation of the first author

[141], presents the results of an improved quasi-static numerical simulation algo-

rithm developed to study both mechanical and scalar transport properties of three- I
dimensional idealized granular assemblages simultaneously. In addition, the results

of an experimental investigation of these properties are also presented and compared

against the numerical predictions. The simulation algorithm includes several new

techniques, including a shuffling algorithm for the generation of an initial random

packing of a granular assemblage and an improved microcell-adjacency method to

accelerate particle-contact search. Furthermore, a relaxation method is employed to !

overcome a singularity in the quasi-linear system of equilibrium equations.

With the objective of correlating scalar transport properties such as electri--3

cal conductivity with the mechanical behavior of granular media, we treat the granular

assemblage as a resistor network, with particle centers being nodes and interparticle

contacts being resistors, for the purpose of computing the conductivity.

The Reynolds dilatancy for randomly dense-packed granular assemblages is

found to depend on the interparticle friction, at odds with Reynolds' original hy- II
pothesis. The use of linear contact mechanics is found to be valid near the ideal

rigid-particle limit. Also, a strong correlation is found between electrical conductiv-

ity, stress and fabric tensors, indicating that the scalar transport properties can serve

as a useful macroscopic probe for the particle-contact topology in granular media. i
Triaxial compression tests, employing steel balls as electrically conductive

granular particles serve to confirm our simulation of both the mechanical and scalar I
transport properties, provided that the electrical conductivity calculations are based

on the experimental load-resistance characteristics of individual contacts. The mea- -
sured contact resistance between steel balls is found to be much higher than theoretical

predictions based on Hertzian contact, and exhibits a much stronger dependence on 3
normal load, possibly due to asperities and oxide films on the steel-ball surfaces.

I
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Chapter 1

Introduction

Granular media are materials composed of distinct particles which can move

independently of one another and which interact only at highly localized interparticle

contact regions. In general, a test on real granular media such as sand is difficult to

interpret since the stress inside the sample can not be measured directly and must be

estimated from the boundary conditions, although measurements of strain have been

made possible by techniques such as X-ray photography technique. Also, Dantu and

Wakabayashi (1957) suggested the use of an photoelastic material for rods or discs in

order to determine stresses in granular media. Analysis of the force distribution in

such a test was first described by De Josselin De Jong and Verruijt (1969), and the

technique has been adopted by many researchers [45,78,79,102,103,124]. Although

testing of assemblages of photoelastic discs allows for an accurate determination of

contact forces, displacements and rotations of the individual discs, the analysis is

time consuming. Moreover, the technique is not as yet applicable to 3-dimensional

samples.

While physical models are certainly the ultimate test of any physical the-

ory, numerical simulation has the advantages over real experiments in that any mi-

croscopic information essential to the understanding of the macroscopic behavior of

these systems is accessible at any stage of a test, and "experiments" can be performed

numerically that would be very difficult physically. Many reported works show that

1
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numerical techniques are capable of reproducing qualitatively the overall continuum

mechanical behavior of real granular materials [39,40,126,128,29]. Compared with

real granular media such as soils, however, current numerical techniques are able to

simulate only idealized particle shapes such as disks, spheres, ellipsoids etc., in a lim- 5
ited sample size, though the size effect is partly overcome by the use of periodic cell

models. I
Currently, there are mainly two classes of numerical technique employed

to simulate the quasi-static mechanics of granular materials, namely, dynamic and

quasi-static. The dynamical simulation technique, often referred to as the Distinct II
Element Method(DEM) in the older literature, was first developed by Cundall and

Strack [39] and has been widely employed since [40,126,41,128,18,33,10]. However,

various artificial damping procedures have to be used to suppress parasitic particle

vibrations in order to achieve quasi-static conditions. Moreover, it has been noticed i

recently that the algorithm is only conditionally stable [10,30]. For this reason among

others, a direct quasi-static simulation has been receiving increased attention in recent 3
years [115,76,26,14,58].

Reynolds dilatancy, one of the most fundamental characteristics of granu- -
lar materials, has been accounted for in the mechanical modeling of granular flow

[Reynolds(1895), Rowe(1962), Oda(1974a), Nemat-Nasser(1980) and Goddard et al. I

(1990b)]. The factors influencing dilatancy have been studied by many investigators

[120,94,39,103,18,33,14]. The effects of interparticle sliding friction U and of factors i
such as initial void ratio and state of packing have been explored sporadically, often

with conflicting conclusions. As for randomly dense-packed granular assemblages,

Reynolds suggested that friction should have no effect other than to stablize oth-

erwise unstable granular configuration [107]. Skinner showed experimentally that

friction has little effect on dilatancy of random assemblages of spherical particles i

[120]. On the other hand, this effect has also been investigated by means of certain

computer simulation, mostly on the random dense-packed granular arrays, which in-

terestingly led to the opposite conclusion. In simulating the physical experiments I
I
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reported by Oda and Konishi [98], Cundall et al. found that dilatancy depends on

interparticle friction, the assembly with higher friction coefficients dilated more and

at a greater rate [39]. Similar results have been reported by Bathurst et al. [18], and

Chen [33].

Due to their discrete nature, the behavior of the granular media generally

depends on a variety of factors, such as void ratio, interparticle friction, particle shape,

and microstructural arrangement or "fabric", to name only a few. Granular fabric is

believed to be one of the most important factors determining the overall mechanical

response of a medium to the deformation. Oda and Konishi [94,95,96,98] performed

direct measurement of fabric in sand specimens and made many important discoveries

on the deformation mechanisms of granular materials. However, such measurements

are difficult or tedious to pzrform experimentally. It would, therefore, be highly

desirable if the granular fabric could be related to and measured indirectly by means

of macroscopic quantities. Dynamic shear modulus and even the complete set of

elastic moduli, inferred from wave speed measurements, has been found to contain

direct information about the internal fabric [31,32,66,1,2].

On the other hand, scalar transport processes such as electrical or thermal

conduction through granular materials can provide another such macroscopic quan-

tity, since the effective conductivity of granular materials depends not only on the

conductivities of solid grains and interstitial or pore fluid, but also on the volume

fraction of solid particles (void ratio) and particle arrangement or fabric. In fact,

the evolution of mechanical anisotropy of water saturated sands and clays has been

studied in triaxial compression tests by monitoring the radial and axial electrical

conductivity [85,8,4,5]. However, since sand grains are themselves not electrically

conductive, the current is conducted only through the pore water. Therefore, the

measured anisotropy of conductivity mainly reflects the anisotropy of the void space.

While void space is part of the internal structure, it does not serve as a good indicator

of granular contact topology. In particular, granular chain structures, which bear the

major load, and the variation of interparticle contact forces are not fully captured by



4

the conductivity measurements of many earlier studies [85,8,4,51.

Based on above considerations, the present work is concerned with a sys-

tern consisting of electrically conductive particles and an electrically nonconductive

interstitial fluid. One objective is to find correlation between the scalar property and 5
mechanical properties during deformation. The investigation includes both numeri-

cal simulation and physical experiments. The numerical simulations allow access to

detailed microstructural information, such as internal fabric, coordination number,

local contact force etc.. The triaxial compression tests, which employ steel balls as

conductive granular particles serve to validate the computer simulations.

In Chapter 2, some important aspects of the theoretical development and

its application to current investigation will be reviewed briefly, including: (1) the

fabric tensor, (2) particle contact mechanics and nonlinear elasticity of granular me-

dia, and (3) scalar transport through granular media. Chapter 3 provides a detailed 3
description of the quasi-static simulation and the various newly developed simulation

techniques, while Chapter 4 covers the experimental aspects of the current inves- 3
tigation. Numerical simulations, mainly aimed at the study of the microstructural

properties of the media, are explored in Chapter 5. Next, the results of computer 3
simulation on scalar transport through idealized granular assemblages are compared

with experimental observations in Chapter 6. Finally, Chapter 7 summarizes the 3
major conclusions of the present study and suggestions for future work. I

!
I
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Chapter 2

Literature Review

2.1 Microstructure of Granular Media

It is well accepted nowadays that porosity or solid volume fraction alone is

not sufficient to characterize the geometry of the local microstructure of a granular

material, given that two specimens of a granular material such as soil, with identi-

cal porosity, may possess quite different microstructure and behave mechanically in

entirely different ways. In order to understand the dependence of the stress-strain re-

lation on microstructure, additional geometric measures of local structure such as the

geometric fabric tensor, have been proposed by many investigators in different fields,

including granular materials, soil and rock mechanics [99,100,113,73], cancellous or

spongy bone mechanics [62], composite micromechanics [52] etc..

Oda (1978) [99] introduced the concept of a fabric ellipsoid, an ellipsoid

determined by the three dimensional distribution of the unit normal to the tangential

contact planes. Oda, Konishi and Nemat-Nasser (1980) [100] developed the idea of

the fabric ellipsoid, equivalent to a second rank symmetric tensor, and argued that,

after porosity, it is the second best measure of microstructure in granular materials,

which appears to be a matter of general agreement now. Following the work of Oda

et al., these second rank tensors are generally called fabric tensors.

According to Oda (1978), fabric represents the spatial arrangement of parti-

5
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cles and associated voids. This may includes: (a) orientation fabric, which relates to

the inclination of a characteristic dimension of individual particles relative to a refer-

ence direction; (b) packing or mutual relation of particles, defined by the probability

density function, E(n), of contact normals n, and the average coordination number i
(the number of contacts per particle).

The anisotropy of granular materials, measured by the fabric tensor, has I
been divided into two categories: (a) inherent anisotropy, a physical characteristic

inherent in the virgin materials and entirely independent of the applied strain; (b)

induced anisotropy, due exclusively to the strain associated with an applied stress.

Experimental evidence [94] has shown that the mechanical behavior of granular media

is greatly affected by their anisotropy which is closely related to the spatial arrange-

ment of its particles and the fabric. Knowing the mechanism for change of fabric

during deformation will provide better insight into the evolving anisotropy of gran- 3
ular materials. Therefore, the general concept and the several common measures of

fabric will be reviewed in the following. 3
The precise definition of a fabric tensor varies with the type of material

and, sometimes for the same material, according to investigator. The choice of a

particular fabric measure is a matter of convenience and its suitability is judged by

comparison with experimental observation [124]. A relatively universal second-orderI

moment tensor defined by
Ni, =< nin, > (2.1) i

where < ... > designates the sample mean, i.e. < nini >= 1 nini, is called the

anisotropy tensor by Satake (1982) or the fabric tensor of the first kind by Kanatani

(1984). In eq. 2.1, the ni are direction cosines of the cth contact normal n = (n,) to

the tangent plane, with respect to the orthogonal coordinate system. CN is the total

number of contacts in a given volume, and N = (Ni) is symmetric with unit trace. 3
For non-spherical granules, Nemat-Nasser et al. (1983) proposed the tensors:

Hii =< rnimj > (2.2)

I
I
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or
Hij =< mini > (2.3)

where mi is the Cartesian components of a unit branch vector, a branch being de-

fined as the connection from the centroid of one particle to that of another touching

particle. They even suggested the inclusion of average branch length 1 and contact

area & into the fabric tensor, represented by Eq. 2.2 and 2.3, to reflect additional in-

formation on the microstructure. Higher order fabric tensors, such as < ninfnknf >,

< mimjmkml > and < ninjmkmI >, may also be considered. The higher order

tensors provides more information regarding the details of the anisotropy (Kanatani

1984 and Subhash et al. 1991).

Kanatani (1984) proposed a distribution density function E(n), defined as

E(n) = 77Fj,,...,kninj ... nk (2.4)

in which q equals to 1/27r for two dimensional case and 1/4wr for three dimensional

case, F1 ,,...,k, a tensor of even rank r, is referred to as the "rank r tensor of the second

kind". Then,

E(n) = E(-n) (2.5)

J E(n)dfl = 1 (2.6)

where fl is the surface of unit sphere, and E(n)dfl is the relative number of normals n

falling in the solid angle dfl, about the direction n. To represent the density function

E(PIi by the second rank fabric tensor of the second kind, Fij, we have, for the three

dimensicnal medium,

E(n) = T-Fijnnn (2.7)

= -(2.8)

i,j - 1,2,3, and for a two dimensional medium,

1
E(n) = lFjinnn (2.9)

Fj = 4(N,, - .bj) (2.10)

for i,j = 1,2, in which bij denotes Kronecker's delta.
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2.2 Contact Mechanics and Nonlinear Elasticity I
Cohesionless granular materials support an ambient shear stress only through

the contact between particles. Therefore, it is plausible that the mechanism of local 3
contacts should have great influence on overall mechanical properties of these media.

One example is the apparent nonlinear elasticity at small strains exhibited collectively 3
by an assemblage of particles which behave individually in a linear elastic way. This

effect can be ascribed to the intrinsic nonlinearity of the contact mechanics governing 3
particle-particle interactions (Goddard 1990).

Hertz first initiated the mathematical study of the effects produced by mu- I
tual compression of elastic bodies for the case in which the forces between bodies

are normal to the contact surfaces [84,72]. Considering two elastic spheres in contact, I
according to Hertzian theory, a circular contact surface is produced, with radius given

by

a -- (M1f.R)* (2.11)

where f,, is the normal force, R is the radius of the spheres, and M1 = 3(1 -v 2 )/4E, in

which E and v are Young's modulus and Poisson's ratio of the material, respectively. I
The theory also gives the relative approach of the spheres

5 = 2(Mlf,/R'/ 2)2 /3  (2.12)

Hence the apparent nnrmal contact stiffness is given as s

df 3 R 1z "
k. = -f- = ) 1 /f/ (2.13) 3

The tangential stiffness for irictional contacts under oblique contact force 3
was given by Mindlin and Deresiewicz [84,26):

= M~kn(1 - IL)1/3 (2.14) 1
Pfn

where M2 = 2(1 - v)/(2 - v), " the interparticle friction coefficient and ft is the

resultant shear force at the contact.

I
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Figure 2.1: Elastic wave velocity in an FCC packing of 1 inch diameter steel balls with

'low' (A) and 'high' (o) dimensional tolerances, ±50 x 10-6 inches and "10 x 10-6

inches, respectively; after Duffy and Mindlin (1957). The broken lines of slope 1
4

have been added by Goddard (1990c) for comparison. The solid lines with slope 1

represent the Hertz-Mindlin contact, (a) with, and (b) without tangential stiffness.

With permission of the author of [57].

The above theory has been adopted in most theoretical treatments of the

micromechanics of granular media, dating from the landmark works of Mindlin and

co-workers ([46] etc.) up to the most recent publications on the subject ([44,134]

and the references cited). As suggested by above equations, the underlying theory

leads inevitably to the power-law scaling E - pf for the dependence of various elastic

moduli on confining stress p and, hence, to the scaling v - pl for various elastic wave

velocities v (with magnitudes characterized by VE1, here p is the material density).

However, experimental evidence within soil mechanics and geophysics shows that

the scaling E - pf and v - pt are much more representative (see Goddard [57]

for a complete survey), although the pressure dependence may change from p1/2 to

p1/ 3 in high pressure regime or under prolonged vibration at large amplitudes. Such

observations are illustrated in figure 2.1.

It is also reflected quantitatively in the widely used empirical formula for the

shear modulus of dry sands (see [57] and references cited) under isotropic confinement
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at initial or base pressure p:

G = f[(e, - e)A/(1 + e)]p,12  (2.15)

where e is void ratio, while t and ec are constants.

In a detailed analysis [57], Goddard showed that one can explain such fre-

quently observed departures from the 1/6-power dependence predicted by Hertz-

contact theory on the basis of two rather distinct hypothesis. The first involves 3
nonhertzian asperities while the second appeals to the nonlinearities arising from

strain-induced changes in the number of particle contacts. For isotropic confinement

both the above hypothesis yield a 1/4-power dependence of wave speed on pressure

at low confining pressures, with a transition to a 1/6-power dependence at high pres-

sures.

2.3 Conduction through Granular Materials

2.3.1 Introduction I
The prediction of the effective conductivity of two-phase media, in which

one phase is dispersed in a second, has occupied engineers and physicists for the

past one hundred and twenty years [130,35,16,9,47,22,13,55]. This long interest has

been fueled by the proliferation of man-made composite materials and the need to

predict bulk properties such as effective conductivity. Maxwell (1873) was the first

to theoretically calculate the effective conductivity of a dilute stationary suspension

of spherical particles. By considering only the interaction of a single sphere in a

potential gradient, Maxwell was able to obtain the following well-known equation

k- 1= + 2#0 (2.16)

/ko 1-fi0

where, P = (a - 1)/(a + 2); a is the ratio of conductivity of the solid particle to that

of the matrix(or fluid phase); k* is the effective conductivity of the suspension; k0 is

A
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the conductivity of the matrix; 0 is solid volume fraction. To the order of terms in 0

to which it is exact, Eq. 2.16 takes the form:

-Z = 1 + 390 + 0(42) (2.17)

A hundred years later, Jeffrey (1973) extended Maxwell's result to 0(02) by the

addition of two-sphere interactions for a random hard-sphere dispersion

k= 1+ 300 +42 +0(03) (2.18)

where & - •(6) is a slowly-convergent infinite series in 6.

Some progress has also been made for densely packed suspensions of perfectly

conducting spheres. Keller (1963) solved this problem correct to lnc, where c is

the dimensionless gap width, for a densely packed simple cubic array of spheres.

Batchelor and O'Brien (1977) extended Keller's work to include touching spheres

and near-perfect conductors by using a mean-field approach. They theoretically treat

the thermal or electrical conduction through static particulate media in the limit of

maximum volume fraction, for which the particles make point contact with each other

and even interface with flat, convex or concave surfaces under external load. They

find that when a >> 1 the effective conductivity of random two phase media is given

by
S4lna- 11 (2.19)

with constant 4 predicted by the theory and the additive constant chosen to achieve

a reasonable fit with a variety of experimental data points. Their theory suggests

that the exact method of forming a dense suspension will strongly affect its effective

conductivity by the resultant average coordination number of the particles, and it

illustrates that the microstructure has a measurable effect on the conductivity of a

suspension.

2.3.2 Electric Contacts

In present study, we will consider a simplified two phase medium with the

continuous phase being nonconductive. Electrical conduction through a packed bed
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of steel balls, with air filling the interstitial void, represents a prime example. Under

compressional loading, the particles are pressed together and, if elastic, will deform 3
slightly and will develop a flat circle of contact. According to the Hertz theory

described in section 2.2, two touching elastic particles which are spherical locally 3
with radius R will develop a flat contact circle of radius

a = [3(1 _ 12 )fnR]I (2.20)

4E

where a compression force f. acts on each particle normal to the common tangent I
plane at the point of contact. Since the pore fluid is non-conductive, electric flux is

only possible through the contact circle, and the distribution of potential inside the I
two particles is approximately the same as that of the velocity potential in irrotational

flow of an incompressible fluid through a circular hole in a plane wall [161. The solution

to this latter problem is known, and shows that the normal flux density at the contact I
circle is

/pA ) (r < a) (2.21)Sr(a2 - r2)½ I

and the total current across the circle of contact is

Q = j J27rrdr = 2akpAO (2.22)

where k, is the conductivity of the particle material and At is the difference in 3
electrical potential between the particles. From the above equation, the contact

resistance between two particles across the the contact circle is
1

R, = (2.23)

which is nothing but the constriction resistance of the small flat contact area. A

similar equation was also obtained by Holm (1967) and Yovanovich (1967).

However, the contact resistance between two real surface is far more compli-

cated. To understand why, it is necessary to consider the nature of solid surfaces and

the effect of foreign materials on the overall resistance. Contact surfaces are irregular

on a microscopic scale. Even nominally plane surfaces have a waviness with peak-

to-valley dimensions typically from tenths to several micrometers [7,60,6]. When two
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contacts are brought together under low loads, they touch at only a few asperities

(multispot contact). As the load is increased, more asperities come into contact and

the surfaces move together. Therefore, the true area of contact depends on normal

load and the hardness of the material [64,611. This area is only a small fraction of

the apparent contact, except at very high loads where the surface can be severely

deformed. Furthermore, when the metal surface is exposed to the environment, a

contaminant film will be developed through processes such as oxidation and corro-

sion, particulate contamination (airborne and wear debris), fretting, etc., and soon

covers up the virgin metal [136,6]. This contaminant film is often extremely noncon-

ductive, therefore, preventing electrical conduction through the contact. Under such

circumstances, conduction is not possible if the film is unbroken, except when the

film is only a few atomic layers thick, such that some electron current can penetrate

it by means of the tunnel effect [64]. Under a normal mechanical load, the insulating

film on the contact asperities deforms plastically and fractures, so that pure metal

substrates are once again exposed to each other. Figure 2.2 schematically illustrates

this situation where the apparent area of contact, the metallic regions, and the places

with insulating layers are differentiated. The lines of current flow converge at the

region of metallic contact, called "a" spot, as illustrated schematically in Figure 2.3.

Contact resistance decreases with increasing load. The softer and more conductive

the metal, the lower the contact resistance will be at a given force.

2.3.3 Multispot Theory of Contact

Generally, a multispot problem is simplified by assuming all of the a-spots

to be circular and to lie at distances from each other which are large compared to the

radii, thus permitting the assumption of no interference between different a-spots.

Thus, the total resistance becomes
1i

=c (2.24)
Sc 2k a s,, where subscript 'i' represents the ith a-spot.
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Figure 2.2: Schematic illustration of apparent contact surface. The metallic contact I
regions a are indicated by dark areas. Contact at region b (shaded areas) is with

insulating contaminant film. Region c does not touch.

I
current flowI

Ia spo intefacesolid surfaces

Figure 2.3: Microscopic view of a real contact interface: "a" spot and lines of current

flow. I
I
I
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For the case in which the a-spots lie close to each other so that the constricted

lines of flow from different a-spots deflect each other, then Eq. 2.24 is no longer valid.

Holm [64] has made some approximations for the case of the uniformly distributed

a-spots, giving the following expression

0.6= + -(2.25)= 27rnakp a _ kpA, 4k

where n is number of a-spots, a the radius of a-spot, 21 the average distance between

neighboring a-spots, A, the area of apparent contact, and r the radius of the apparent

contact surface.

2.3.4 Effective Conductivity

Suppose that a uniform intensity gradient is set up in the medium, perhaps

by imposing uniform and different values of the intensity at two distant parallel

boundaries. Although we restrict ourselves to the electrical conduction problem,

the formulation can be applied to the transport of other scalar properties such as

thermal conduction and mass diffusion. Henceforth we shall use terms and notation

appropriate to the case of electrical conduction for convenience. So the mean intensity

gradient will be written as < V4) >, where Vb is the electrical potential gradient at

a point in the medium (not necessarily lying in the matrix) and the brackets < ... >

denote an average over the entire volume of the medium. The local current density

J is equal to -k 0 Vt at a point in the matrix and -kpV'0 at a point in a particle.

At each point on the surface of a particle f and the normal component of J are

continuous; and at each point not on such a surface

V .J = 0 and V 2 = 0. (2.26)

Because of the intrinsic linearity, the magnitude of all potential differences

are pioportional to the magnitude of < V4 >, and so for the mean flux density we

have the linear relation [16]

< J >= -K* < VO >, (2.27)
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where the effective conductivity K° is a second-rank tensor, dependent on the struc-

ture of the medium. 3
Next, we will derive a formulation for the mean flux density through gran-

ular media with a nonconductive fluid phase. In this case, if particles are highly 3
conductive, the resistivity will be brought about at contact points only. Therefore,

the medium can be approximated by a resistor network, as shown in figure 2.4, with

particle centers being nodes and interparticle contact being resistor. Similarly, Fig. 2.4

can also be used to represent a elastic network [57] by replacing resistors by elastic

springs whenever elastic properties are involved. By definition, we have

< j >= f-JdV (2.28)

or

<J>= JJdV+~Z JdV (2.29)3

where V, Vp and V,,r represent the total volumes of medium, particle and fluid phase,

respectively, N the number of particles. I
For the nonconductive matrix, the first term on the right in Eq. 2.29 vanishes,

so we have
1 N

>=V > E vp JdV (2.30) 1
Applying Gauss' divergence theorem to Eq. 2.30, the following is obtained

<j >= -E fZ xJ. ndS (2.31)

where Sp is the surface of a particle, x is the spatial position of the points on Sp, and 3
n represents the unit normal to Sp. Noting that the term J • ndS is current passing

through the portion dS of particle surface Sp and assuming that the current passes 3
through the individual particle at discrete points of contact, we obtain

< J>= I C'xQ (2.32)

where Q is current flowing through the points of contact. For spherical particles, I
x = xP + Rn, here xP is the position vector of the particle centroid, and Eq. 2.32

I
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Figure 2.4: Network

becomes

<J >= VZR~nQ (2.33)

where, electrical conservation (Kirchhoff's law) gives:

C C

-xPQ = xP"Q = 0 (2.34)

The formulation described above is similar to one to derive the macroscopic stress

tensor for a assemblage of granular materials except for the tensorial orders involved.

In order to compute the interparticle current Q, the local potentials 4 of the

particles must be determined first. These local potentials can be further divided into

two parts: one derived from the mean potential gradient, the other being fluctuation

necessary to satisfy the current balance condition within the system. The latter is

obtained by solving the system of linear equations

AV'= B (2.35)

where A represents the conductance matrix, V' is the fluctuation and B is the net un-

balanced current owing to the mean potential gradient. When a cluster of one or more

particles is isolated from the rest, the matrix A become singular. This singularity is

resolved by means of the relaxation method to be discussed in Section 3.1.3.
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From Eq. 2.27 and Eq. 2.34, one can infer the effective conductivity tensor

K*, which represents exact solution of the problem, in contrast to the mean-field 3
theory of Batchelor & O'Brien [16] described next.

Their mean-field theory assumes that the potential difference j -0i between I
particles i and j is given by (xi - x'). < V41 >= -2Rn. < VO >, i.e. to the

difference between the potential at the two sphere centers in the mean potential

field. Furthermore, we assume that the contact resistances at all contacts take the

identical average value k. With these assumptions, one no longer has local electrical

conservation, but rather a global conservation in some average sense.

According to above assumptions, we can write

1 2RQ = ¢= -ý- < Mý > (2.36)

Combining Eq. 2.36 with Eq. 2.33 leads to the result similar to one given by Batchelor 3
& O'Brien

< J >= --- R nn. < V0 > (2.37)

Therefore, by comparing Eq. 2.37 with 2.27, one obtains the effective conductivity

tensor according to the mean-field theory i
2R 2NC 3

--* , ,ZEnn (2.38)

or in terms of the fabric tensor N, 3
z 2R=CN N (2.39)

where CN is the total number of contacts in a given volume, which is equal to N

times the average coordination number. I
The estimates of effective conductivity provided by the mean-field theory

of Batchelor & O'Brien, as outlined in [16], is different from that provided by the

conventional Voigt-Reuss-Hill bounds which do not depend on the fabric tensor. 3
I
I



Chapter 3

Quasi-static Simulation and

Assemblage Generation

As a continuation and extension to three dimensions of the work of Bashir

and Goddard [14], we have developed an improved version of their 2D programs

by introducing several new techniques 158). Among these is the combination of the

particle-assemblage generation and the computation of particle motion together into

one single program. The new program includes a shuffling algorithm, for generating an

initially random loose-packed configuration of particles, and an improved microcell-

adjacency method to further accelerate particle-contact search. Furthermore, we have

also overcome a singularity in the quasi-linear system of equilibrium equations by

means of a relaxation method[121]. Our program is able to simulate any deformation

history and allows us to study both mechanical and scalar transport properties of an

idealized granular assemblage simultaneously.

The validity of the numerical algorithm is "tested" by comparison against

the triaxial compression experiments. I know of no other way to test it except against

other numerical codes, however, which have their own problems. The triaxial com-

pression experiments are to be described in Chapter 4, while the qualitative compar-

isons between the results of numerical simulations and triaxial compression tests wil

be given in Section 6.2.

19
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The following sections will describe the quasi-static simulation and afore-

mentioned techniques. 3

3.1 The Model and The Relaxation Method

Unlike dynamic simulations, in which the full (Newtonian) dynamical equa- 3
tions are employed to update particle configurations, the present quasi-static scheme

first moves every particle in the system according to the mean deformation gradient, I
thus destroying the state of equilibrium. Hence, particles have to be relocated to

a equilibrium position by means of fluctuations about the mean. These fluctuating

displacements of an individual particle are determined by the total unbalanced elas-

tic force exerted on it as a result of the mean deformation. Equilibrium is achieved

by an algorithm that allows the system to expand or contract volumetrically when

necessary to maintain a control pressure or stress at a desired level which, thereby,

allows us to compute the granular dilatancy. 3
3.1.1 The Force-displacement Law 3

During the deformation of granular assemblages, particles move with inde-

pendent degrees of freedom and interact with each other only at their contact points.

The assumed force-displacement relationship will be presented here for the case of

two spherical particles A and B in contact, as shown in figure 3.1.

Particle radius is denoted by R and its centroid by X. Upon the deformation,

a particle undergoes translational and rotational displacement increments u and w,

respectively. The superscript in Fig. 3.1 and in the sequel denotes a given particle. 3
The unit contact normal vector to the tangential plane, viewed from A to B, is

expressed as n = (XB - XA)/IXB - XAI. The interaction between the particles 3
depends on the relative motion of the contact points. The vectorial components of

relative displacement in normal and tangential direction are written as: I
Au" = (u B _ u A)•- nn (3.1)
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3

UA fn

S2
At

Figure 3.1: Interaction between two particles

and

Aut = (uB _ UA) - Au, + RB XWB + RA X WA (3.2)

where uAB - uB - uA, RA - RAn and RB - RBn.

These relative displacements are used to calculate increments of normal and

shear forces, Afn and Aft, according to:

Af,, = k,,Au,, (3.3)

and

Aft = ktAut (3.4)

where k,, and kt denote thl normal and tangential elastic stiffnesses, respectively,

which may be allowed to depend on Afn and Aft. However, since we are primarily

interested in nearly rigid particles, the exact dependence of the elastic stiffnesses on

Af is presumably not important (vide infra).

Furthermore, the force increments Af, and Aft are added, respectively, to

the forces f, and ft that existed previously between two particles to yield the current
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values:

f. =f + Af,, (3.5) 3
and andf = I + Aft 

(3.6) 1
The components, f,, = fn and ft = ftt, of the force vector act along 3

the directions of contact normal and tangent plane and are both set to be zero if

f,, is not compressional (since cohesionless particles cannot sustain a tensile force). 3
A (Coulomb) sliding friction law is incorporated as follows: the magnitude of the

shear force ft given by eq. 3.6 is checked against the maximum possible shear force 3
magnitude:

(fM)m o = it If"I + Ch (3.7) 3
where p(- tan 0,) is the coefficient of sliding friction (defining the so-called angle of

intergranular friction 0,), and Ch represents cohesion, which is taken as identically I
zero for the non-cohesive particles considered here. If IftI exceeds (ft)m,,,, sliding

occurs at the contact point. Under this circumstance, ft takes the value of (ft)',o,

and maintains its direction. Therefore, the total force and couple exerted on particle 3
A by particle B are given by:

f = f. + ft (3.8) 3
M = RAx ft (3.9)

3.1.2 The Governing Equations

The force f and couple M are next decomposed into three Cartesian com-

ponents, which yields in matrix form: 3
F = F0 + kABAu(AB) (3.10) 3

where, F = mfe, fs, fz, m i, m.], the generalized force, represents the components of

force and moment exerted currently on particle A by B. F = [f=0, fs, f,, mo, mO, mj

represents the components of the force and the moment in the previous state. The

I
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matrix kAB is called the local contact-stiffness matrix, while Au(AB) is the general-

ized relative displacement between A and B, written as:

tsR - X

V VU If - U
Au(AB) E (3.11)

I rBWf + rAWA

rBWB + rAWA

rBWB + rAWtA

3 where the subscripts denote the corresponding Cartesian component.

For all contacts on A to be in static equilibrium, the sum of generalized force3 must vanish:
m iF = •F° + F, kABAu(AB)= 0 (3.12)
B B B

or

ZkABAu(AB)= -- F0  (3.13)
B B

In the current simulation, the displacement of each particle is additively3 decomposed into two components: the macroscopically imposed mean r defined by

the global velocity gradient and a fluctuation u', the latter being such that the force1 balance eq. 3.13 is satisfied. Therefore, eq. 3.13 becomes:

IjI kAB Au'(AB) - • FO - 1: kAB AT(AB) (3.14)
B B B

for A = 1,2, ... , N, with N denoting the total number of particles within the system.

I This represents a system of quasi-linear equations for the (6N) fluctuating particle

displacements:Kx-b (3.15)

where K is the grand stiffness matrix, x = [u.(1), u' (1), u'(1), W (1), WV' (1), W' (1),-.-,

u.(N), u,(N), u. (N), w'.(N), wr, (N), w.1 (N)] the vector of the fluctuating displacements

3 and rotations, and b the unbalanced force arising from the mean displacements and

forces from the prior deformation step.U
U
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3.1.3 Relaxation Method

The K matrix in ( 3.15) becomes singular whenever a cluster of particles i
is isolated from the remainder, giving rise to "neutral" or "zero-frequency" elastic

vibrational modes representing a finite dimensional null space of K. To overcome

this singularity, Bashir and Goddard add a small artificial term to the diagonal of K 3
and then employ a gaussian elimination method to solve (3.15) for x.

In the present simulation, we utilize the relaxation method (originally due 3
to Southwell [121]) as our linear-equation solver, since it effectively cuts out the zero-

frequency modes of K. Being an iterative method, relaxation involves two procedures 3
to accelerate convergence. First, the relaxation order is determined by searching

for the residual of greatest magnitude IRtA,,, (the residuals R being the difference 3
between the right-hand and left-hand sides of (3.15), evaluated at the current values

of x in an iteration), then "relaxing" the corresponding equation by calculating an

new value of zx so that (R,),f = 0. This modifies all other residuals, which also U
depend on xi. The procedure is applied repetitively until all the residuals satisfy a

preset convergence criterion on some norm IRI. In the present context the fluctuations

determined by the relaxation method serve to move only those particles, or particle

clusters, having non-equilibrated forces or moments. Hence, isolated clusters do not

fluctuate, and we avoid the singularity in inverting (3.15).

For the packing algorithm described in the sequel, the relaxation method 3
is particularly effective, since in the early stages, the number of particle contacts is

small and only those particles not in equilibrium need be moved. Furthermore, the 3
relaxation scheme always finds the maximum unbalanced forces and adjusts particle

positions so as to balance them out. 3

i

I
I
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Figure 3.2: Microcells and the simulation cell in (a) initial, and (b) sheared configu-

rations

3.2 The Microcell Method and The Adjacency

Matrix

In the computer simulation of a classical mechanical system of N interacting

particles, it is generally necessary to search for all particles within the range of spatial

interaction of a given particle. In general, one needs N(N - 1)/2 such searches,

including a time-consuming evaluation of particle separations, a non-trivial task when

the number of particles is large. However, the search time can be reduced to O(N) by

means of spatial microcell methods [3] and the associated adjacency-matrix technique.

In the 2D case, for instance, the deformable simulation cell is divided into

regular lattice of nm x m initially square microcells as shown in Fig. 3.2. A microcell is

small enough to contain the center of at most one particle throughout the subsequent

cellular deformations. All microcells are then labeled ordinally. For each microcell,

the definition of adjacent microcells may include a neighborhood extending several

microcell layers outward, depending upon the range of the pair interaction considered.

Whatever the range, a matrix Ac defines the adjacency of microcells:
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Ac(i, j) { 1, if microcells i and j are adjacent (3.16)
0, otherwise

where, i,j = 1,2,..., mc(mc = nm x nm), which is nothing more than the connectivity

matrix of the associated graph [131]. We next define a second matrix Oc to represent

the occupancy of microcells by particles, such that: 3
Oc(i 1, if microcell i is occupied by particle j (3.17) 3S0, otherwise

where, i = 1,2, ..., mc, and j = 1,2, ... , N. A third matrix Ap is then used to represent 3
the adjacency of two particles:

Ap(i,ji) 1, if particles i and j are adjacent (3.18){ 0, otherwise 3
where, i,j = 1,2, ... , N, as determined by their occupancy of adjacent or non-adjacent

microcells. This matrix gives the "Verlet neighbor list" of molecular dynamics [3] and 3
can be expressed as the matrix product:

Ap = OcTAcOc (3.19)

Once the microcell adjacency matrix Ac is established, it remains unchanged

as long as the microcell topology is fixed during the simulation. Upon determination of 3
the occupancy matrix Oc at each deformation step, the particle adjacency matrix Ap

can be found easily by the simple operation (3.19). However, (3.19) is computationally 3
equivalent to: I

Ap(i, j) = Ac(map(i), map(j)) (3.20)

where map defines a mapping array whose element map(i) equals the ordinal number I
(1,2, ..., mc) of the microcell occupied by particle i and which, therefore, corresponds 3
to the row vectors of Oc. Based on the computed particle adjacency matrix Ap, the

I
I
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3 current program searches for all particle contacts in order to construct the stiffness

matrix and to calculate contact forces.

In our simulation on rigid spheres, the size of the cubical microcell is chosen

such that its largest diagonal is equal to the smallest particle diameter in the system

to assure that not more than one particle simultaneously occupies a given micro-3 cell. Furthermore, the largest particle diameter defines a cutoff distance at which one

must search for a potential contact with a neighboring particle. For a 2D monodis-

1 perse disk assemblage, therefore, two surrounding layers will be sufficient to cover

the cutoff distance, which means there are 24 microcells adjacent to each microcell.

At the start of a simulation, the microcell adjacency matrix Ac is constructed ac-

cordingly and remains unaltered throughout the computation. At each deformation3 step, whenever particles move to new positions the mapping array is updated, which

is a rapid process. For a given particle, we need only look at the neighboring 243 microcells surrounding its microcell to find the adjacent particles. In the worst case,

24 searches would be required if all neighboring microcells were occupied. Therefore,

I 12N provides an upper-bound on the total searches necessary if we consider a pair of

neighboring particles as one search.

In reality, the number of searches required depends upon the number of

particles lying within the cutoff distance or upon the system density and configuration.

In a 2D random particle assemblage, the average number of necessary searches is far3 less than 24 per particle. Through our computations, we have found that the average

number of searches for each particle is about 6 for random loose-packed, and 11 for3 random dense-packed monodisperse disk systems. Therefore, the total number of

searches is approximately 3N and 5.5N, respectively.I
3.3 Random Configuration Generation

In the past thirty years or so, the packing of disks and spheres of equal3 radii in 2D and 3D has been studied extensively by both experimental and theoret-

I
U
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ical means, in part because they serve as useful models for a variety of amorphous U
materials such as molecular fluids and glasses. The macroscopic properties of gran-

ular materials and porous media have also been modeled by sphere packings. Three

models which are commonly employed for packings of disks and spheres are the dense 3
ordered packing, dense random packing, and loose random packing. The dense or-

dered packing for rigid spheres of equal radii occurs when the density is equal to 0.7405

in 3D(FCC or HCP). Similarly, the density is equal to 0.9069 in 2D(triangular). For

dense random packings, it is generally believed that the densities fall into a range 3
0.62 to 0.66 for 3D and 0.81 to 0.87 for 2D [19,50,71,114,133].

In a previous study of 2D disk assemblages, Bashir and Goddard [14] have 3
employed two distinct algorithms to generate two types of assemblages: imperfect tri-

angular close-packed for the monodisperse assemblage and pseudogravitational for the

polydisperse. Recognizing the limitation of those algorithms in allowing for variable

initial densities and for generating random isotropic configurations, we have developed

a packing algorithm which is capable of densifying an initially random loose config-

uration to any desired density for both monodisperse and polydisperse assemblages

by means of cyclic shear under isotropic confining pressure. One could if desired add 3
body forces such as gravity but we shall not consider them here. I
3.3.1 The Shuffling Algorithm

There are many ways of realizing random sequences, the conventional one

being the standard random-number generation. For the purpose of generating random

particle assemblages, we introduce a new way of rapidly obtaining repeated random

sequences of numbers by means of a card-shuffling algorithm. The idea is to degrade

the order of a given set of numbers by means of a certain number of "riffle" shuffles.

In shuffling theory [43], a single riffle shuffle can generate at most two in- 3
creasing sequences for an ordered n-member set S, where a increasing sequence is

defined to be a sequence whose members are in the increasing order of their ordinal 3
numbers in the original set S. If F,(R) be the number of permutations of n items I

I
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with exactly R increasing sequences, it can be shown that [108]:

R n+l

F.(R) = )(R- j)- (3.21)
j=0 j

Shannon's theorem [511 states that a permutation with exactly 2 ' increasing sequences

can be obtained by k riffle shuffles of the original set members in only one way.

Hence, in k riffle shuffles, the total number of permutations that can be

achieved is:
2k

T.(k) = L F,(R) (3.22)
R=1

and thus, the number of riffle shuffles k, sufficient to generate a sequence of random

numbers is given by [43]:

T,,(k) > n! (3.23)

(3.23) implies that for a deck of n = 52 cards, k = 7 riffle shuffles are sufficient to

obtain a nearly random sequence [43].

In order to compare our shuffling algorithm with a standard random-number

generator, we have calculated the autocorrelation between the shuffled sequence of

fifty numbers and an initial ordered sequence, as well as the autocorrelation between

two random sequences obtained by a random number generator. Let S(i) represent

the elements, i = 1,2, ..., n, of an n-member sequence, then, we employ as autocorre-

lation function between two such sequences S'M and SO2) the formula:I A = ••= sin["(S-()(i) - ½)]sin[2(S(1 )(i) - 1)] (3.24)

E sin2[3(S(1)(i) - 1)]

which treats the sequences as cyclical. We have also measured the CPU time required

by both techniques, and the details will be discussed below.

3.3.2 Shuffling vs The Random Number Generator

In our shuffling algorithm, a variant of the riffle shuffle is used, wherein each

-- shuffle consists of one random "cut" and "flip", and one interlacing shuffle [43]. To

compare our shuffling algorithm with a random number generator, we have computed

I
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Figure 3.3: A comparison between the shuffling algorithm and random number gen-

erator I
the autocorrelations between the shuffled sequences of fifty numbers and the initial 3
ordinal sequence as a function of number of shufflings. Similarly we also computed

the autocorrelations between the first, second and succeeding sequences with the first 3
sequence of fifty random numbers generated by a random number generator in our

computer(a HP-730TM workstation). Fig. 3.3 indicates that sequences of random 3
number generated by the shuffling algorithm are as good as those obtained by the

random number generator in terms of randomness, even when we employ only seven 3
riffle shuffles for all of our computations. To compare performance in speed, we have

measured the CPU time required by both techniques. Fig. 3.4 clearly shows that the I
random number generator uses approximately four times as much CPU time as the

riffle shuffle.

3.3.3 Initial Random Loose Configurations I
In our packing algorithm the size of microcell is chosen sufficiently small so 3

as to contain the center of not more than one single particle under any circumstance, I
I
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but also sufficiently large so as to minimize the total number of microcells.

I Fig. 3.5 shows a 2D rectangular microcell ABCDA with two sides being

denoted by Ax and Ay. When subject to a simple shear, the microcell ABCDA is

deformed to ABC'D'A. If the largest dimension AC' is chosen to be equal to the3 smallest particle diameter we are assured that no two particles can simultaneously

occupy the same microcell throughout the deformation. Therefore, we have:

I D D9 C C'

S S

SAy
max 'I 0 AX

* A B

Figure 3.5: Microcell geometry

I
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A d (3.25) 3

+ r.,)2 + 1

Az = Ay. r., (3.26) 1
where, dmi, is the smallest particle diameter, yn,,• is the magnitude of the total shear 3
strain, and r.. is the ratio of two sides (r, = 1, usually).

By assuming an initial density and knowing the total particle volume, we

estimate the size of the simulation cell and divide the cell into a lattice of nm x

nm microcells. The microcells are then labeled ordinally from 1 to mc (=nm x 3
nm). To place N particles randomly in the simulation cell, we generate a random

sequence of microcells by employing the shuffling algorithm described before. We 3
then pick a microcell from the random sequence and place a particle randomly within

the microcell, so as to avoid overlap with previously placed particles, until all N

particles are placed successfully. Otherwise, the number of microcells is increased

and whole process is repeated. Fig. 3.6 and 3.7 show one such random loose-packed I
configuration for 132 disks and its corresponding random dense-packed configuration.

Similar configurations for 48 polydisperse(multiple-sized) spheres are displayed in I
Fig. 3.8 and 3.9. 3

3.3.4 Radial Distribution Functions 3
The radial distribution functions g(r) for the monodisperse assemblages, r

being scaled on particle diameter, have been computed and compared with those gen-I

erated by the Percus-Yevick (P-Y) equation of statistical mechanics and by a Monte

Carlo (M-C) simulation [127,132,137], to verify that both our loose-packed configura- U
tion and dense-packed systems are random for 2D as well as 3D assemblages. Fig. 3.10

shows the smoothed g(r) distribution function for 100 realizations of an initially loose-

packed configuration of 132 disks(density=0.43). Fig. 3.11 shows the smoothed g(r) 3
for 100 realizations of dense-packed configurations of 132 disks(density=0.80, close to

I
I
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Figure 3.7: Random dense-packed configuration for 132 disks(density=0.80)
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Figure 3.10: The simulated radial distribution function for 2D loose-packed config-

urations of 132 disks(discrete points), compared with the P-Y radial distribution

function(solid curve)

those for 2D random dense packing). For 3D, Fig. 3.12 shows the smoothed g(r) for

30 realizations of loose-packed configurations of 132 spheres(density=0.27). Finally,

Fig. 3.13 shows g(r) for 10 realizations of moderately dense-packed configurations

of 90 spheres(density=0.58). Our computed radial distribution functions reveal that

both the initially loose-packed and the final dense-packed systems are quite random,

at least if one accepts the molecular model as a standard.

The text of this chapter, in part, appeared in [58]. The dissertation author

was the secondary author of the publication, and shared equal responsibility with

other co-authors.
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m- Chapter 4
I
* Experimental Investigation

I
The following sections describe the triaxial compression experiment employ-

ing steel balls as conductive granular particles.

I 4.1 Equipment

I 4.1.1 Compression Tester

The current experiments employ a commercial compression tester as loading

frame for the test cell. The 911 MTT-02/10 compression tester, manufactured by

I Comten Industries Inc., is a motorized device with a digital interface and a variable

speed drive. It consists of two parts, the main unit and a monitor/controller. The

I loading force is measured and displayed on the monitor/controller. The displacement

of a specimen is measured with a separate 500 DC-E LVDT linear displacement

transducer manufactured by Lucas-Schaevitz.

1 4.1.2 Triaxial Cell

The triaxial cell, a redesigned version of standard commercial cell with ad-

ditional provision for conductivity measurement, is schematically illustrated in Fig-

I ure 4.1. Furthermore, the cell dimensions have been reduced in order to fit into the

3
I 39
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compression tester, and a bellows is added to the top cap to prevent escape of con-

fining fluid and to eliminate the friction between piston (shaft) and its bushing, a

problem that is inevitable in the conventional design of the triaxial cells. The cell

is made of stainless steel, with a transparent plexiglass cylindrical body. The base

adaptor, with a porous steel screen installed on the top, has a channel for connection

through the cell base to a vacuum system, for initial specimen preparation, or to

the atmosphere for drained tests. The loading cap has also a porous steel screen at

the bottom and an eccentric, small-diameter hole on the top to release air during

the preparation of saturated specimens (not used in the current experiments). This

small-diameter hole is always blocked by the threaded plug during experiments to

prevent compressed air from escaping through the specimen. In the center of the

loading cap, there is a conical recess, into which the end of loading shaft seats. In the

top cap, there is an outlet from which the compressed air enters the cell chamber to

form a confining pressure around the specimen. The LVDT device is mounted on the

top cap to measure the end displacement of the specimen. The external connection

to measure the resistance through the granular specimen is also shown in Fig. 4.1.

4.1.3 Digital Image Processing System

A PC-based digital image acquisition/processing system, used in a previous

study [140], is employed for data acquisition. The hardware consists of a Hitachi

KVC-150 video camera, a Toshiba M-6100 VCR, a Sony PVM-1271Q monitor, a

IBM-PC compatible and an embedded PCVISIONplus PFGPLUS-512-3-u-XT/AT

I frame grabber, manufactured by Image Technology Inc.. The software includes a

Werner-Frei Associates Image Lab and Imagetool programs.

The basic components of the system and their mutual relation are depicted

in Figure 4.2.

I

I
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Figure 4.2: Digital acquisition/processing system, (after Zhuang 1991). f

4.2 Materials and Specimens

The test material used as particles in the triaxial compression experiments

is 440-C stainless steel balls provided by Thomson Precision Ball Company, Inc., the

physical properties being listed in Table 4.1 in which the first four properties are

provided by the manufacturer, the fifth is based on our own measurement, and the

last one is found from CRC Handbook of the tables for Applied Engineering Science

[21]. An interparticle friction coefficient p = 0.15 was measured by gluing the steel

balls to a plate and observing the critical angle of sliding down a second inclined

stainless steel plate. The granular assemblages consisted of a randomly packed beds

of approximate 3400 of the above steel balls having a 3.81cm diameter and a 4.9cm

height. The initial packing densities were around 0.6, which is close to that of a

random dense packing of spheres. The ambient confining pressure is kept constant at

0.48kg/cm2 throughout the course of the deformation. I
I
I
I
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Diameter (cm) 0.278 ± 0.000064
Density (g/cm3 ) 7.667
Elastic modulus (kg/cmn2) 2.039 x 106
Poisson ratio 0.29
Friction coefficient 0.15
Electrical conductivity (ohm . cm) -1 16670.0

Table 4. 1: The physical properties of the steel balls employed in the experiments.

4.3 Specimen Preparation and Experimental Pro-

cedure

First, the latex membrane is attached to the base adaptor, then stretched

to the top of the split-cylinder, two-piece mold to form a cylindrical space. The steel

balls are poured into the mold space in five portions, each is followed by rod-stirring,

a procedure known as "rodding" in the soil-mechanics community, in order to achieve

a consistent initial packing condition. The loading cap is then placed on the specimen

and held by the membrane. A vacuum is then applied to withdraw the air from the

specimen, which makes the specimen rigid under the atmospheric pressure. After the

two-piece mold is removed, the plexiglass cylindrical body together with the top cap

is installed on the cell base and tightened with three tie bars. The cell is then placed

between two platens of the compression tester. The LVDT transducer is mounted

on the top cap of the cell. Laboratory compressed air is used to fill an approximate

0.05m 3 tank serving as air reservoir, which maintains a constant confining pressure

during the experiments. Simultaneously, a confining pressure is created inside the

triaxial cell that is always connected to the air reservior. The compressed air is shut3 off when the desired pressure p is reached. The vacuum is then turned off, and a

valve is opened to vent the air in the specimen to accommodate drained tests. The

3 specimen preparation is now complete.

Following the above specimen preparation, the compression tester is turned

Ha
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on. The wires are connected between the cell and one electrical multimeter, which 1
is utilized to measure the electrical resistance through the specimen. The LVDT

is connected to a second multimeter, which measures the voltage output from the

LVDT, thereafter being converted to the axial displacement. The video camera and

VCR are set up to record the display readings of the monitor/controller and two

multimeters. Everything is then ready for the experiment.

VCR recording and the compression tester are then started. The loading

speed is slowly increased from zero to approximately 0.1cm/min. This loading process i

is terminated at 20% axial compressional strain. I
4.4 Data Analysis i

With the help of the image processing system, about 30 select frames are

extracted from the recorded video image of the entire experiment at different stages, I
and the force, resistance and voltage readings are read off for later data analysis.

The measured force, corrected for the bellows spring force, gives us the axial

force exerted on the specimen by the shaft. Then we compute the vertical stress over 1

the specimen according to:

a,=P + F (4.1)

where p is the confining pressure, F is the axial force exerted on the specimen by the

shaft, and Acap is the area of the loading cap. The horizontal stresses a2 and q3 are i

equal to the confining pressure p.

According to the definition, we obtain •

K*- L (4.2) 5
where Rt is the total resistance through the specimen, K* is the effective conductivity

of the medium, L is the specimen length and A. is the cross-section area of the

specimen. i

I
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4.5 Measurements of Contact Resistance

Faced with the extremely large discrepancy between the experimental mea-

surements and the results of the initial numerical simulations utilizing eq. 2.23 to

compute the contact resistance, we were lead to identify the underlying cause. As

a matter of fact, there has been ongoing research into electric contact resistance for

the past several decades [64,60,61,6,125,68,83,24,119,251, since almost all electrical

or electronic equipment contains numerous contacts through which the current and

voltage signals are transmitted, and the failure of even a single contact can result

in a complete system failure. From the above literature survey, one finds that the

resistance at a real contact may be much higher owing to the various reasons outlined

in the section 2.3.2. This ultimately results in lower effective conductivity of granular

medium than that predicted by the theory.

Based on this understanding, we conducted an experiment to measure the

electrical contact resistance in a single column of steel balls as a function of axial

load. The experimental set-up is schematically depicted in figure 4.3. A stack of balls

is confined within a reinforced quartz glass capillary tube, with an inner diameter

0.29cm, slightly larger than that of the steel balls, and loaded with dead weight

from the top via a piston. The resistance is measured with a multimeter at various

loads. To avoid all contacts between the balls and flat surfaces, the top and bottom

steel balls in the column, consisting of five balls, are soldered to the piston and the

flat base, respectively. The relationship between resistance and load, the average

result of seven experiments, is plotted in figure 4.4 and compared with that predicted

by Eq. 2.23. The overall scatter is within 20% of the average values. The large

scatter is probitbly ascribed to the nonuniformity of the ball surfaces and associated

contamination films. One can see a very strong dependence of resistance on the load,

with a slope of approximately 2.4 compared with 1/3 given by Hertzian theory. This

observation suggests that an oxide film on the ball surface ruptures and deforms

plastically under the applied load.
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Figure 4.3: Experimental set-up used to measure the electrical contact resistance. I
The load-resistance curve depicted in Fig. 4.4 represents the case of loading.

Experimental observations revealed that the load-resistance curve for unloading is

lower than that of loading. This hysteresis is probably due to the plastic deformation i
of asperities and irreversible rupture of the superficial oxide film during loading.

While the contact between two balls can experience loading and unloading during the I
deformation of granular media, the localized contact regions on the ball surfaces keep

changing due to the relative movement (rolling and sliding) between balls. Therefore,

it is plausible to employ the normal load-contact resistance relation of Fig. 4.4 for

loading for purposes of numerical simulation.

I
I
I
3

I
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Figure 4.4: Relation between contact resistance and normal load: comparison of the

measured contact resistance with the theoretical Hertzian-contact prediction.
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Chapter 5

Simulation Results I
I

A series of numerical simulations on idealized granular assemblages have

been conducted to investigate the effects of microscopic and microstructural properties

of the constituent particles and their assemblages, including (Coulomb) interpa- :'cle 3
friction, nonlinear contact mechanics and initial packing density, on the mechani-

cal behavior. Of particular interest is the Reynolds dilatancy, shear strength and

the evolution of granular microstructure of idealized granular assemblages subject to

constant mean confining pressure. Numerical simulations of the triaxial compression 3
test have been conducted to simulate the effects of the initial density on the mechan-

ical behavior as well as the scalar transport properties. The mechanical behavior is 3
discussed first in this chapter, while transport properties will be covered separately

in the following chapter. 1

5.1 Interparticle Friction U
This study involves both 2D and 3D mono- and poly-disperse granular as-

semblages subject to simple shear deformation under constant mean confining pres-

sure. The 2D assemblages consist of 132 disks initially packed to random dense

packing with about 0.82 area fraction. On the other hand, the 3D granular assem-U

blages contain 48 spheres initially packed to an approximate dense random packing

I
48
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3 with 0.60 volume fraction. The nondimensional radii of the particles are equal to

1.0 for monodisperse systems, and equal to 0.8, 1.0, and 1.25, respectively, in the

polydisperse systems, with approximately same total volume of particles of the three

different sizes. Thus, we use 64 disks of radius 0.8, 41 disks of radius 1.0 and 27

disks of radius 1.25 for 2D systems, and choose 27 spheres of radius 0.8, 14 spheres

I of radius 1.0 and 7 spheres of radius 1.25 for 3D systems. Normal and shear contact

stiffnesses are taken to be k, = 1.0 and kt = 0.8, respectively.

I By a scaling based on contact stiffness and particle radius, one can specify

an externally imposed nondimensional pressure (=p,.R/k,,, where p,., k, and R,

3 denote the real confining pressure, normal stiffness and particle radius.), under which

interparticle overlap(proportional to normal force) will not exceed 0.1% of particle3 radius throughout the simulations since we are primarily concerned with nearly rigid

particles [14]. This pressure is found to be 6.0 x 10-s for 2D experiments and 4.0 x3 10' for 3D experiments, and is maintained during the initial packing process and

subsequent shearing. Both the 2D or 3D test assemblages are subjected to simple

shear up to 20% total strain with different interparticle friction coefficients under

otherwise identical conditions.

To further clarify the influence of particle friction on Reynolds dilatancy of

3 randomly dense-packed granular a z -,mblages, we carried out several simulations on

both 2D and 3D, and mono- as well as poly-disperse idealized granular assemblages

I with p=0.0, 0.3, and 0.5, respectively. The following conclusions can be drawn from

the results, presented in Figure. 5.1, 5.2, 5.3,and 5.4: the dilatancy increase with

3 increasing magnitude of p, which is in agreement with previous results [39,18,33],

including the results for polydisperse (random-packed) cases found by Bashir and

I Goddard[14]. However, this finding is contrary to Reynolds' original hypothesis on

the random dense packing of granular assemblages, as interpreted. The stress ratio3 (o1 - o'3)/p, where a1, a3 and p are major, minor and mean stress, also increases with

increasing magnitude of p. Polydispersity is found to have a noticeable effect on the

I mechan.al behavior of granular assemblages.

I
I
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From Fig. 5.5 and 5.6, one finds that the coordination number decreased

drastically in the start of shearing, usually within 1% of shear strain, which indicates 3
that a significant particle rearrangement took place early in the shearing deformation

[79,95,96]. The coordination number then fluctuated about a roughly constant level

throughout the subsequent deformation [18]. A higher interparticle friction generally

results in a lower coordination number after granular assemblages yield. Although

the computed coordination number varies with shear strain and interparticle friction,

it is found to be, in both 2D and 3D cases, always greater than the geometric critical

coordination number Z, - - (= 2 for d = 2 and 1.5 for d = 3, here, d, > 1, denotes

the number of dimensions [116]). Z,, at which there exists an infinite cluster of bonds I
across a medium according to percolation theory [116,75], is a dimensional invariant

insensitive to the details of the lattice studied. The geometric percolation threshold Pc I
is shown to be about 0.347 for 2D triangular lattice and 0.119 for FCC lattice [116],

while the elastic (central-force, omitted hereafter) bond percolation threshold pe,

which would associate with solid behavior of bond networks at small strain, is found

to roughly equal to 0.58 for 2D triangular lattice and 0.42 for FCC lattice [49]. Here,

we define a ratio Z/Z,,,.WJ representing the fraction of active "bonds" in the network

of particle contacts compared with the coordination number of the densest possible

systems, where Z being the coordination number of a system and Z,,, the maximum 3
possible coordination number, for instance, 6 for 2D triangular lattice and 12 for 3D

FCC lattice. In 2D monodisperse case, from Fig. 5.5, one finds a ratio 0.6 at initial I
stage, slightly larger than the elastic bond percolation threshold, and a range from

0.4 to 0.5, dependent on interparticle friction, after early shearing deformation, which i
is between the geometric and elastic percolation threshold. Similar results are found

in 3D monodisperse case. In a previous 2D work, however, Bashir and Goddard [14] i
found the ratio very close to the geometric percolation threshold after initial 3% shear

strain, which is much smaller than the elastic percolation threshold.

Based on detailed microscopic observations, we find that: (1) granular mi- 3
crostructure evolves such that contact normals concentrated in the direction of major

I
I
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Figure 5.1: Effects of interparticle friction coefficients on dilatancy of 2D assemblages

subjected to simple shearing deformation.

principal stress during the shearing deformation [124]; (2) the granular assemblage is

composed of two types of region: a major skeleton composed of heavily stressed chains

of particles and less stressed regions surrounding this skeleton, with most of contact

breaking and making occurring within the latter region and with the skeleton remain-

ing relatively unaltered for a small incremental deformations; (3) particle rolling is

major deformation mechanism, especially when interparticle friction is large[102].

5.2 Nonlinear Contact Mechanics

As we discussed in section 2.2, the contact stiffness is generally a function

of load, often well represented by the power law

k. = Cf(5.1)

where C is a material constant, f. normal load, and for example, the exponent takes

on values A = 1/3 for Hertzian elastic spheres and A - 1/2 for a conical tip pressed
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Figure 5.6: Effects of interparticle friction coefficients on average coordination number

of 3D assemblages subjected to simple shearing deformation. 3
against a plane [571. Accordingly, the relationship 3.3 between increments of relative 3
displacement and contact force is nonlinear.

Since the linear model A = 0 not only offers simplicity but may be able to

provide qualitatively valid insights into the link between micromechanical properties

and macroscopic behavior (17,18,39,40,41,128] and, since we are mainly interested I
in ideal rigid limit [14], most of our simulations have been carried out for linear

contacts. However, we felt that it is important to check its validity and the effects of 3
nonlinearity.

In the present simulations we employ a monodisperse system with 48 spheres I
packed to initial density 0 = 0.60 and interparticle friction U = 0.15. The system

is subjected to the triaxial cort- -ssion under a constant mean confining pressure I
p = 4 x 10-s. A values are selected as 0.0, 1/3, 1/2, and 1, with 0.0 representing the

linear contact and 1.0 representing extreme nonlinearity. The tangential stiffness kt I
is simply taken to be 0.8k,,.

From Fig. 5.7, one sees that contact nonlinearity has no apparent influence

I
I
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Figure 5.7: Effects of non-linear contact on dilatancy of 3D assemblages subjected to

triaxial compression.
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on Reynolds dilatancy in the small- to intermediate-strain region, but some effects

are observed at higher axial strains. Moreover, Fig. 5.8 indicates that the average

number of particle contacts is, roughly speaking, not affected. It is expected that the

nonlinear contact law will tend to make the strong contacts (in terms of contact force)

stronger, and the weak contacts weaker, therefore, changing the force distribution.

Although we do indeed observe variations in the force distributions, the different

degrees of nonlinearity yield only a small deviation in the average normal force, for

the cases A = 0.0, 1/3 and 1/2 (see Fig. 5.9). Finally, from the results in Fig. 5.10,

one sees that the strength of the idealized granular assemblages tends to increase

somewhat with the increase of nonlinearity. The small effects of contact nonlinearity

on the mechanical behavior indicate that a complicated nonlinear contact law is less

significant in modeling the mechanical behavior of granular materials.

5.3 Effects of Initial Specimen Density

To simulate the effects of the initial void ratio or density on the behavior

of mechanical as well as the scalar transport properties, we have generated three

random monodisperse packings of 100 spheres with different initial densities, 0.52,

0.56 and 0.60, respectively. The interparticle friction coefficient p is taken to be 0.15.

All three packings are subjected to the triaxial compression deformation under the

same nondimensional confining pressure po = 4 x 10-1 in the directions normal to

compressional axis.

Fig. 5.11 and 5.12 indicate that, for initially loose systems such as those

with 4, = 0.52 and 0.56, densification or negative dilatancy occurs initially and per-

sists throughout the deformation. The potential for densificatiou increases with the

decrease of the initial density [91]. On the other hand, the initially dense system,

with 4 = 0.60, experiences positive dilatancy from the very beginning of the defor-

mation. Nevertheless, the densities of three systems, either contracting or expanding,

tend to approach the same critical value asymptotically. Fig. 5.13 shows that, for

I
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loose systems, the shear strength increases monotonically. However, for the initially U
dense system, its strength increases first until a peak value is reached, then decreases. II
Similar observations in real triaxial compression tests are to be discussed in follow-

ing chapter. Again, both the loose and dense systems seem to possess an identical I
ultimate strength after being subjected to a large deforimation [91]. The initial coor-

dination number increases as the density rises. Upon deformation, the dense system 3
initially experiences a significant loss in the number of contacts, whereas the loose

system gains contacts. However, both systems approach approximately the same 3
coordination number at roughly 1% axial compressional strain, and then maintain

fluctuating but slightly increasing values (see Fig. 5.14). Next, I shall attempt to 3
elucidate the observed behavior.

In a loose system, the initial number of interparticle contacts and coordi- i
nation number are low, and just exceeds slightly the elastic-percolation threshold, at

which there just begin to exist sample-spanning chains of particles capable of support-

ing an ambient confining stress (Goddard 1990). However, due t- lack of sufficient

contact force from neighboring particles, such chains are highly unstable to (Euler)

buckling. Under these circumstances, one can anticipate that a given pair of adjacent 5
particles in such a chain will accommodate axial compression with a small rotation

normal to their line of centers until such rotation is hindered by lateral contact with

neighboring particles. By means of this process, a given particle chain will generally

undergo a kind of lateral 'branching' until it becomes capable of supporting increased 3
axial compressive stress (Goddard 1990). Therefore, the overall granular structure is

less stable and more likely to collapse to a more stable, denser system upon deforma- -
tion and to generate load-bearing capability. Such capability is further enhanced as

the system gets denser. On the other hand, the dense system will have to expand in 3
order to deform, hence loses contacts initially. Owing to the volume exoansion against

the ambient confinement, the system exhibits shear strength, but further dilatancy 3
reduces the system density and decreases the stability of the granular chain structure

and its ability to support the external loads. This explains the after-peak strength

I
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I Figure 5.11: Effects of initial density on dilatancy of 3D assemblages subjected to

triaxial compression.

loss for dense systems illustrated in Fig. 5.13.
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Figure 5.12: Effects of initial density on density evolutions of 3D assemblages sub-

jected to triaxial compression.
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Figure 5.14: Effects of initial density on coordination number of 3D assemblages

subjected to triaxial compression.
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Electrical Conductivity I
1

6.1 Numerical Simulations 3
For the purpose of data validation, the computer code is modified specifically

to simulate a triaxial compression experiment over an idealized granular assemblage

with the physical properties of steel balls, listed in table 4.1, and experimental loading 3
conditions as input parameters. The mechanical behavior as well as the electrical

transport properties of the systems are investigated simultaneously. 3
The idealized system, as schematically depicted in figure 6.1, contains 100

equal size spherical particles in a periodic cubic cell. The system, being confined in 3
X and Y directions with a constant pressure po, is compressed in Z direction. To

simulate the effects of the initial density on the mechanical as well as scalar transport 3
properties, we have generated three isotropic random packings of sphere assemblages

with initial densities being 0.52, 0.56 and 0.60, respectively. The interparticle friction I
coefficient A is taken to be 0.15, corresponding to the measurements on the real

'dirty' steel balls (whose definition is to be provided in Section 6.2). The computed I
dimensionless normal force is converted to real force by the scaling factor based on the

particle radius and ambient confining pressure so that the contact resistance between

two particles can be calculated with the experimentally determined load-resistance 3
relation given in figure 4.4, also corresponding to the 'dirty' steel balls. The tangential

I
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Figure 6.1: The idealized system in triaxial compression (q - 0.60).
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Figure 6.2: Relation between mean effective conductivity and specimen density.

force is not considered in evaluating the contact resistance, since, according to our I
experimental observations, the tangential force has no apparent effect on the contact

resistance. The results reported in this section correspond to the physical properties

of 'dirty' steel balls. I
It is generally true that a denser system should possess higher conductivity or

lower resistivity owing to the fact that medium is better connected so as to offer more 3
paths or branches for current to pass through. Fig. 6.2, where the mean effective (the

word 'effective' and corresponding superscript '*' is henceforth omitted) conductivity 3
is the average of conductivities K_, K1, and K.. in X, Y and Z directions, reveals

this trend although more fluctuation are observed in high density region. 3
Next, we shall consider the changes of the conductivity KI... in the compres-

sional (or Z) direction during the course of deformation. From Fig. 6.3 and 5.13, it is

not difficult to see the similarity between the behavior of shear strength and conduc-

tivity, although there are more fluctuations in the conductivity than in strength. For I
the initially dense system, with 4 = 0.60, the conductivity increases first to a peak

within the first 2% of axial strain, then fluctuates wildly with a decreasing trend.

I
I
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Figure 6.3: Dependence of conductivity on axial strain and initial density.

This behavior can be correlated to the mechanical behavior, particularly deformation

mechanism of the granular assemblages.

Upon the compression, load-bearing chains are built up gradually in the

Z direction in order to sustain stress anisotropy, which create easier paths for cur-

rent to pass through. Therefore, in early stage of deformation, the conductivity

increases steadily despite the fact that system experiences a loss in total number of

contacts (see Fig. 5.14), note that the loss of contacts happens mainly on X-Y plane

or the direction of minor principal stress. Owing to the dilatancy of the system (see

Fig. 5.11), these granular chains become less stable progressively. When the system

is further expanded, these major load-bearing chains finally buckle. The branching-

out of chains diverts current from the preferred direction. Therefore, one observes

the after-peak decrease in conductivity. The subsequent built-up and buckling of

new heavily-stressed chains is primary cause of the fluctuations in conductivity. On

the other hand, the densification in the loose systems during the deformation tends

to stablize these progressively loaded chains, thus resulting in a steady increase of

conductivity.
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Figure 6.4: Evolution of principal value ratios for stress, fabric and conductivity I
() = 0.60). 3

The principal value ratio, the ratio of major to minor principal value of

tensors such as stress or fabric, is often used to characterize the state of anisotropy. I
Following is an attempt to correlate the evolution of the anisotropy of three tensors,

namely stress o-, fabric N and conductivity K tensors. At the start of compression,

the anisotropy of the assemblages is induced progressively. After reaching a peak, 3
it remains relatively unchanged throughout the deformation. From Fig. 6.4, one see

fabric is not very sensitive to the change in stress state, while conductivity is more 3
sensitive.

Fig. 6.5 and 6.6 clearly suggest strong correlations between conductivity, 3
stress and fabric tensors. Note that the lines of linear regression almost pass through

the point (1,1) in the plots, which represents the isotropic relation between these

tensors.

The results shown in Fig. 6.7 indicate that the mean field theory of Batch- I
elor and O'Brien underpredicts the effective conductivity slightly but can be used to

understand the qualitative scalar transport behavior of granular materials. I
I
I
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Figure 6.5: Relations between principal value ratios of conductivity and stress

(slope=2.39).
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68 1
0.0040 I

So o~ ,,':---• m.. ,'•;oi I .,,,.

E

-0.0030

0.0020 VI it , 51

*I %%II.

* 0.0010
0.00 0.05 0.10 0.15 0.20 3

Figure 6.7: Comparison between the exact solution and mean field theory in predict- I
ing the effective conductivity of idealized granular assemblages (q = 0.60). 3
6.2 Experimental Verifications

Three triaxial compression tests have been carried out, one with 'clean' balls

and two with 'dirty' balls, at approximate 0 = 0.60 initial densities. Here, clean balls

refer to those, whose protective oil film was just removed and cleaned by Aceton sol-

vent, and are expected to have no much contamination film on the ball surface (or low 3
contact resistance, however, the normal load-contact resistance relation was not ex-

perimentally determined immediately after cleaning process unfortunately), whereas i
the dirty balls refer to those, which have been exposed to normal laboratory environ-

ment for approximately four months after being cleaned with Aceton, thereby, possess

thicker insulating contamination film (or high contact resistance), and for which the 3
load-contact resistance relation (Fig. 4.4) and interparticle friction coefficient have

been measured. The experimental results with clean balls are given here solely for

the comparison against the experimental results with dirty balls. It is not intended

to compare the experimental results with clean balls to the results of the numerical 3
I
I
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Figure 6.8: Comparison of shear strength between numerical simulation and experi-

ments with dirty balls (0$ = 0.60).

simulations, since no numerical results for clean balls are available.

3 Plots Fig. 6.8 and 6.9 indicate that the results of numerical simulation and

physical experiments with dirty steel balls are in qualitative agreement, and that the

simulation is capable of predicting the mechanical and scalar transport properties

of granular assemblages. Comparison of the experimental results between clean and

dirty balls in Fig. 6.9 also reveals that the individual contact resistance can drastically

affect the conductivity of the medium.
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I Chapter 7
I

Conclusions and

Recommendations
I

We have developed a new version of a quasi-static simulation of the me-

chanics and conductivity of sphere assemblages by introducing several new numerical

techniques, including a relaxation method which is shown to be a useful tool to over-

come a singularity in the quasi-linear system of equilibrium equations. The computer

code is versatile enough to allows one to simulate any deformation history and to

study both mechanical and scalar transport properties of idealized granular assem-

blages simultaneously.

The results of the present investigation show that: (1) interpartide friction

has great influence on Reynolds dilatancy for random dense-packed mono- as well as

poly-disperse granular assemblages, a result contrary to Reynolds' original hypothesis;

(2) the use of linear contact mechanics is justified near the ideal rigid-particle limit;

(3) scalar transport properties such as electrical conductivity can be employed as a

good indicator of the stress anisotropy and microstructural particle-contact topology,

(4) the comparison between numerical results and experimental findings reveals that

the numerical model is able to qualitatively predict the mechanical as well as scalar

transport properties of idealized granular assemblages; (5) the contact resistance be-

tween steel balls deviates greatly from the theoretical prediction and depends strongly

71
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on the normal load. 3

Although the present numerical algorithm can simulate sphere assemblages

consisting of multiple-sized particles, an extension to include ellipsoid particles is I
called for in order to study the particle shape effects on the mechanical behavior as

well as scalar transport properties of granular assemblages. To examine the Hertzian- I
contact resistance theory, one should find new type of particles with better surface

smoothness and no surface resistance film. One of the promising materials is ion-

exchange beads, provided that they are not too soft. 3
I
I
I
I
I
I
I
I
I
I
I
I
I
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Flow Chart for the Numerical
Algorithm
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Appendix B

Computer Code

program UNIV3D

"c---Variable definition:
"c dm--number of dimensions
"c npt--number of particles
"c idim--number of equations in quasi-linear system of equation
"c nl--number of microcells in X, Y and Z directions
c mxnc--maximum number of microcells
"c mxc--maximum number of contacts a particle could possibly have
"c nnb--the number of adjecent microcells around a microcell
"c r--radii of particles
"c x,yz--position coordinates of particles at prior step
"c xm,ym,m--position coordinates of particles given by mean deformation
"c xt,ytzt--position coordinates of particles given by "mean + fluctuation"
"c uxuy,uz,wx,wy,wz--fluctuation displacement
"c ut, uym,uzm,wxm,wym, wzm--mean displacement
c uxt,uyt,uzt,wxt,wyt,wzt--total displacement
"c a--grand stiffness matrix
c b--vector of unbalanced force
"c akbk--temparory 6 by 6 matrix
"c xn--correction to the fluctuating displacement
c dxn--increment of xn
c res--residual of the system of quasi-linear equations
c fnO--normal force between particles at prior step
c fn1--normal force between particles at curren- step
c ftO--tangential force between particles at prior step
c ftl--tangential ýý*orce between particles at current step
c tft--total tangential force between particles at current step
c dft--increment of tangential force between particles at current step
c tfor--total force between particles at current step
c sfxsfysfz--total force on each particle
C smx.smy,smz--total moment on each particle
c nij--fabric tensor
c di--distance between adjacent particles
c nx,ny,nz--contact normal
c s--stress tensor
C strnO,strn--deviatoric strain rate tensor
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c sstrn,psstrn--total strain 3
c shear--shear strain increment
c cond--conductance matrix
c brx,bry,brz--net unbalanced current due to mean potential gradient 3
c cur--interparticle current
c voltf--fluctuating potential
c ceff--effective conductivity tensor
c ih--number of contacts for a particle 3
c adjc--adjacency matrix of microcell
c kxx.kyy,kzz--for the periodicity of simulation cell
c map0--microcells occupied by npt particles at prior step I
c map--microcells occupied by npt particles at current step
c mappart0--particles occupying the microcells at prior step
c mappart--particles occupying the microcells at current step
c kphi.ktheta--contact normal distribution
c ctpx~ctpyctpz--coordinates of contact points
c thkn,thkt--scaled magnitude of normal and tangential force
c mshOmshl--raadom sequences of microcells 3
c khlfl,khlf2-first and second half of a random sequence

c---Definition of input variables 3
c iprepk--job option(O for packing, 1 for repacking, 2 for relaxing,
c 3 for deformation)
c irmax--number of realizations
c istp--number of deformation steps
c outmax--maximum number of outer loops
c inmax--maximum number of inner loops I
c nrecordl,nrecord2--number of data points to be saved
c shearm--shear strain increment
c sigaa0--controlling pressure
c epsa--a small number
c epso--allovance for the pressure balance
c epsi--allowance for the force balance
c den-i--initial density of loose packing
c denO--desired packing density
c iseed--seed for random number generator
c strnO--deviatoric strain rate tensor
c rl,r2,r3--particle radii
c ckn,ckt--normal and tangential contact stiffness
c cs--interparticle friction
c orf--overrelaxation factor I
c irel--maximum number of iterations in relaxation method
c nshuf--number of shuffling
c lflip--number of flip in shuffling I
c nrif--number of riffle in shuffling
c itrplmax--maximum number of trials in placing a particle in a microcell
c without overlaping adjecent particles
c deval to dv8--controling parameters for packing
c i-cumu--an integer number
c itrialm--naximum number of trials of packing to desired density
c e-ym--elastic modulus

I
I
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.3C pois..r--Poisson's ratio

C barku--scaling factor of normal contact stiffness
c barR--scaling factor for radii
c grad--potential gradient
C conk,coub--two parameters in load-resistance relation

c isigW--pressure control parameter

N implicit real (a-h,o-z)
implicit integer (i-n)3 integer du

c parameter(dm.3,npt=48,idim=6*npt ,n18,~mncnl**dm~axc=12)
C parameter(dm-3,npt=48. idime6*npt ,nlul0,axncnlz**dm,mxc=12)Iparameter(dm=3,npt=OO, idime-*npt ,n1Z9,uxncnlI**dm,axczl2)

parameter(nnb-342.piu3. 1415927,zero=O.O,izero=O,one=1.O,val=1OOO.)
real x(npt),y(npt).z(npt),r(npt)
real xm(npt) .ym(npt) ,zm(npt) ,xt(npt) .yt~npt) .zt(npt)
real ux(npt) ,uy(npt) ,uz(npt) ,uxm(npt) ,uym(npt) ,nuz(npt)
real vx(npt) .wy(npt) ..z(npt) ,wxm(npt) ,wym(npt) .vzm(npt)
real uxt(npt).uyt(npt),uzt(npt),vxt(npt)vwyt(npt),vzt(npt)

real a(idim,idim),b(idim),ak(6,6),bk(6.6),xn(idim)

real fnO(nptnupt) ,fnl(npt~npt) ,tft(npt~npt)Ureal ftO(npt,npt,dm),ftl(npt,npt,dm),dlt(dm)
real sifx(npt) ,sfy(npt) .sfz(npt) .smx(npt) ,smy(npt) ,saz(npt)
real tfor(npt,npt) .dl(npt~npt) ,dxn(idiu)
real nx(npt,npt),ny(npt,npt),nz(npt,npt),nij(dm,dm)

real res(idim) ,s(dm,dm)
real ctpx(npt~mxc) ,ctpy(nptumxc) ,ctpz(npt Dxc)

real strnO(3,3),strn(3,3)3sstrn(3,3).pustrn(3,3Xstarin(3,3)

real cond(npt ,npt) ,brx(npt) ,bry~npt) ,brz(npt)
real cur(npt~npt) ,voltf(npt) ,c-.eff(3,3)
real cxn(npt) ,cres(npt) ,cdxn(npt)

integer ih(npt) ,kxx(mxnc~nnb) ,kyy(mxnc,nnb) ,kzz(mxnc,nnb)
integer adjc(mxnc,nnb) ,mcont(npt ,npt) ,map~npt) ,mapo~npt)I ~integer mappart(mxnc) ,mapparto(xmxc)
integer stest,outmax,highstrn~kphi(l2) 3ktheta(24)
integer thkn(npt ,mxc) ,thkt(npt .mxc)

integer mshO (axnc) ,mshl (mxnc) , khlf I(mxnc) .khlf 2(mxnc)

open(unit=1O,file='3dat' ,status'lold')

open(unit=30,file='condu' ,status='unknovn')

c open(unit=49,file='inner' ,status='uznknown')I c open(unit=50,file='outer' ,status='unknowns)
c open(unit=51.file='displ' ,status='unknown')

open(unit53,file= 'slope' ,status=' unknown')I open(unit=54,file='phi' ,status='unknown')
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open(unituSS,iil.= 'iibond' statua='unknown')U
opea(unit=56,iil.= 'theta' ,atatua='unknovn')

open(unit=6l,f ilea 'predatO'. status= unknown')I

open(unitu62,fii.~'coord0' ,statuis='uzaknown')
open(unit=Tl.tilea'prodatl' ,status.'unknown')
open(unitz72,til.a'coord1' ,status='uzzknown')

apen(unit=68,fiilea'iuav0l' statusz'unknown')
open(unit-69.ti1.e 'fnav' ,status='unknown')

open(unit=7Oiile'a'in'.status'limknown')I

open(unit=8Oile.ý'coord' ,status= 'unknown')
open(unit=8l ,iile~contc' ,status='unknown')

opeu(unitu82,iilea 'contp' ,utatus.'unknown')
open(unit=e3,fil. 'thick' ,statua= 'unknown')
open(unit=92iileulforce' ,status='unknovn')

c open(unit=98,iile='balan' ,statuslu'uzknovn')I
open(unit99gfile.'probleu' ,status='unknown')

c --- reading initial data and parameters

read(10,*)iprepk,irmax,istp~outmax,in-uax,nrecordl ,nrecord2
read(1O,*)shearm,siguaO,epsa,epso,ephi,den-.i~denO~iseed
read(1O,*)strnO(1,1) ,strn0(1,2),strna(1,3)I
read(1O.*)strnO(2, 1) ,strn0(2,2) ,strnO(2,3)
read(lo,*)strn0(3,1) ,strn0(3,2),strnO(3,3)

rea~d(iO,*)rl ,r2,r3,ckn,ckt,cs,ort, irelI
read(1O,*)nuhuf~lflip,nrii,itrplmax,deval,devm2,devu3,afl ,a12
read(10,*)den02.den~l,deni~den2,den3.don4,doiLS
read(1O,*)dvO,dvl~dv2,dv3,dv4,4v5,dv6,dv7,dv8

read(1O,*)i-cuau,itrialm,e-.ya,pois..r~barkn~barR,grad,aada
read(10,*)conk,coznb, isism

vrite(*,*) 'isiga' ,isigmI

ii(nrecordl .ne.0)then

idistl~istp/mrecordlI
else

idistl=1OOOO
end if

if (nrecord2.ne.0)then
idist2=iutp/nrecord2

else

idist2=10000U
end it
if(istp.le .nrecordl)idistI=1

if(istp.le .nrecord2)idist2=1I
monop= 1
if(rl .ne.r2.or.r2.ne.r3)aonop=2

if(iprepk.l1..2)thenI
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eps imO .0
cSZ0. 0
call rinit2(3,3,stnO,0.0)
ii(den0.le.0.6)sh~arm0.0

anld it

c--carrying out "irmax" realizations

do 699 irzl,irmax

I ~itrial= 1

199 icunu0

c---generating initial loose systen for packing

ii(iprepk. eq.0)then

Isol=
evO0.0

I 20=nint(real(npt)/(1.+r/l*d+r/3*d)
nlO~nint(real(n20)e((r2/rl)**da))
n30=npt-nlO-rL20
write(e .e)nlO,n20,n30Up1=-realn1/raxt)

3 ~ ~solidv=4. O*pi* (nlO*rl**dm+n20er2eI*dm+n30'pr3**a~d)/3 .0

iseed=(iseed+int(1OOOO0eran(iseed)) )*2+1
ratioxz=1 .0I ~ratioyz=1 .0
strmax=shearn
delzO=2.0*rl/sqrt((ratioxz+tan(strmax))**2+ratioyz**2+1 .0)
delxO~delzO*ratioxz
dely0:delz0*ratioyz
nm-l+exp(log(solidv/den..i)/du) /delz0U101 vrite(*,*)'initial na:',nm

103 if(nm.gt.nl)then
write(*,*)'nm>nl,not enough microcell. '.'nn,n=' ,nu,Ul
write(99,*)Oaa>nl,not enough micro~cell. ''Ini,nlm',nin,nl

end i

dyz~dely0*na

ncell~na**daI ~iJ s01+2. 0*r3/exp(log(solidv/(ncefledenO) )/dm)
ii(real(ijsO) .ge.real(na)/2.0)then

U-nmn+1I go to 101
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end itU

call adj3(fznc,ijsO~na~nnb.adjc~kxx~kyy,kzz)
call shuttle(acell~nshuf,lilip,nrit~iaeed,mshO,

+ mshl~khlfl.khlf2)

call vsc-$iinit(mappartO~mmxcizero)3

nl*0
n2=0

n3=0I
kap=O
ncount=O

do 100 npzl,npt

it (monop. eq.O1then

r(np)zr2I
else

wzite(*.*)Ipleaae include r-.asaigu subroutine'

+ ~call r-.ahsigzi(nl,n2.n3,nlO~n20,n30~rl,r2,r3,I
+~p pI~2,iseed~r(np))

end it

83 kap=kap+l
it(kap.gt .ncell)then

c write(*,*) ir='I,ir, I ra' ,nu,' np=',np,' kap=',kap

Umi-m+ II

end if

kl-msbO(kap)

kazkl/ (nm~rLm)

it(km*nm*nm.ne .kl)kn~km+1
jm= (ki-(kn-i) *nm*mm) Inn

ncount=ncount+l

hxz(ia-1)*delxO3
hy=(jm-1)*delyO
hz-(ku-l)*d.1z0

itrpl=OI
84 itrpl=itrpl+l

x(np)=hx+ran(iseed) *delx0
y(np)=hy+ran(iseed) *delyO

z (np)=hz+ran(iseed) edeizO

do 80 j1.~nnb

kn--mappartO(adjc(kl ,j))
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j it(kn.eq.0)go to 80
k2umapO (kn)

Xkn-x(ku)-kxx(kl ,jiedxO
yknay(kn)-kyy(klj )*dyO
zkn-z (kn) -kzz (ki J ) *dz0
d02=(x(np)-xkn)**2+(y(up)-ykn)**26'(Z(np)-zkn)**2

it(d02.ge.(r(np)+r(ka))*(r(np)+r(kn)))go to 80
iti(itrpl. lt. itrplma")then

end: to:?4

80 continue
mapO (np)zklI mappartO(kl)=-np

100 continue

C ---------- - --- --- - - - --- -- ------

call rinit2(npt ,npt ,in0.zero)
call rinit3(xptnpt, da , tOz* zro)

c wrjte(*e) 'ncauntw' *ncount
dens ityusolidv/(dxoedyo*dzO)

write(62,e)ir,ist,dxO,dyO,dzO,aa,ijsO

do 79 i=1~npt
write(62,*)i,r(i) ,x(i) ,y(i) ,z(i)

79 continue

c---starting from a packed system to repack, to relax the stress,
c to do simple shear etc.

else

write(*,*)Istart from packed system'I ~call rinit2(npt ,npt ,fnO,zero)
call rinit3(npt ,npt ,dm,ft0,zero)

read(61 ,*)irt,nlO,n20,n30,pl ,p2,density,solidv,sigma
read(61,*)iu,istold,sstrn(1,1) ,sstrn(1,2) ,sstrn(1,3).

+ :stru(2,1),sstrn(2,2),sstrn(2,3),

+ strn(3,1) ,sstrn(3,2) ,sstrn(3,3) ,ev,delev-1ast, iside0

do 149 i1l,npt
read(61 ,*)it,ntemI if(ntea.eq.0)go to 149
do 147' J1.ntem

reoad(61 ,*)jla,fn0(i,jla) ,it0(i~jla, 1),

147 continue

149 continue
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read(62,*) irt * istt. dx0,dyO~dz0, Tat. ijeot3
do 176 iml,npt

176 read(62.*)it~r(i).x(i).y(i) ,z(i)

if(iprepk.*q. 1)theii
denspadenuity
delden. (denO-densp) /10.0I
ndenal

end it3

ratioxz~dx0/dzO
ratioyzadyO/dzO
if(iprepk .eq. 3)then
strmax=aax(abs(strnO(1,2)) ,abs(strnO(1,3)),abs(strnO(2,3)),

+ abs(strnO(2,1)) ,abs(strno(3,1)).abs(strno(3,2)))e(istold+istp)
else

straa~x=0.4I
end it
delzO=2.0*rl/sqrt( (ratioxz+tan(utruax) )**2+ratioyz**2.1 .0)
na-dz0O/delzO+l

177 if(nm.gt.nIl)then
write(*,*)'lnanl,nat enough aicrocell. 1. 'n,nl=',~nu~ni
write(99,*) ýnmnl,not enough microcell. , 'Ina,n1' ,na,nlI
stop

end it3

writ e eecompuited na'I, a,'I nl'I, nl
C stopI

dolzO~dzO/na
dalxO~delzO*ratioxz

delyo~delz0*ratioyz
ncellzia**da
ijsOl1+2. 0*r3/exp(log(solidv/(ncell*deno) )/dm)
if(real(ijsO) .ge.real(nu)/2.0)then

end UM+
go to 177

vrit~e~)'nm',n,', ijsO=',ijs0.'. ncell=',ncellI

call adj3(axnc,ijsO,na,nnb,adjc,kxx,kyy,kzz)

call mapping(npt ,namxmnc~sstrn,delx0,dely0,delzO,I
+ x~y,z,map0,aappartO,iouts)

end it3

ktflag=O
c write(98,e)ir3
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3 call rinit2(3,3.astrnO.O.)
call rinit2(3,3,postru.O.0)

ilargl1
ismalzO

cif(iprepk.eq.2)istp=1

c--anumber of cyclic shearings for packing or steps for simple shear

do 598 istaistold+1,istold+istp

3 icheck=0

iter3O0

lowstrn=0
highstrna=0
nostop=O

I692 i~tr.e3adnso~qOte
icheck~icheck+1
call rmatx-.copy(3,3,struO,stru)I else
if(lowstrn.it .2)then

icheck~icheck+1
do 690 i=1,3

do 690 j=1,3
strn(i,j)=strn(i,j)/2.0

690 continueI lowstrn=lowstrn+l
iter3O0

if(nostop. eq. 1)nostop=0

if (highutrn. eq. 0)then
icheck~icheck+1'I do 691 i=1,3

do 691 j=1,3

strn~i,j)satrnO(i,j)*2.0

691 continue
else

icheck~icheck+1

do 693 J=1,3 do 693 
i=1,3

strn(i~j)=strn(i,j)*2.0
693 an t continue

if(nostop. eq. 1)nostop=0I iter3=0

highstrn=highstrn+1
if (highstra. gt .2)then
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write(99.*) 'sorry. I cannot find a satisfactory deley'
writo(99.i)'to balance the stress, stop! highstrn'
stop

end if

end if

e~nd i ft
ifUprepk.le.1)then

+if(denO.le.0.6.or. (denO.gt.O.6.and.denuity.gt.denO-O.002I
+ .and.abs(psstrnC3,1)+psatrn(1,2)).lt.I.Oe-8))then

strn(3,1WO.O
strn(1,2)=O.0

else

ismal~ismal+1

if(mod(ilarg,2) .ne.0)then

if(isuial. eq. 1)strn(3, 1)=shearu
if(ismaa. eq.2) strn(3. 1W-shearxif~im~leq.3str(3.1=-seaI
if(ismal. eq.4)strn(3, 1)=shearz
ifr(ismal O. e.)tn3.)se
astrn(1,2)=0.0

else
if(ismal. eq. 1)strn(1 ,2Wshearm

if(iszal.sq.2)strn(1 .2W=-shearn
if(ismal. eq.3)strn(1 ,2W-shearz
if Cismal. eq.4)strn(1 ,2)=shearm
strn(3, 1WO.0
astrn(3,1)=0.0

end if
if(mod(ismal.4). eq.0)then

ilarg=ilarg+1
ismal0O

end ift

end if
end if

if (icheck .gt. 12)thenI
write(99,*)'progran terminated due to unconverged outloop'

srto(.0p rga terminated due to unconverged outloop'

end if

strn-.c=0.0

sstrn-c=0.0
do 6887 i=1,3

do 687 j=1,3

sstrn(i,j)=psstrn(i,j)+strn(i,j)
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Iiif(abs(strn(i~j)) .gta5? rnc)tnc~tni
it(abs(sstrn(i,j)).gt.abs(sstrn-.c))sstrn..cusstrn(i,j)I687 continue

c write(99,*)ir~ist,iterout,strn..c
iterout=03c vrite(S0,*) ir~ist,iterout,stest,testeorror,delev,ev~ilu/m,

c +doen'
write(**) 'ir, ist,iterout~stest~test,error,delev,ev,ilu/m,

+dens, isiga'
write(*.*)'I

c ~write(98,0*)I

c --- choosing the increment of contraction for packing

itiprepko.le 1thenI ~it(iprepk. eq.0.aid. ist.le. 1)then
delevO=-dv0

alse if(density .ge. den0)then
delevOnO.0
icumuicumu+1

elseI ~if (density,.1t.den02)then
delev0=-dvl

eIlse it(density.1t.den~l .and.density.go.denO2)then
delev0=-dv2I ~else if(denuity.lt.denl .and.density.ge.denOl)then
delevO=-dv3

else it(density.lt.den2.and.density.ge.denl)thenI delev0=-dv4
else it(density.lt.den3.and.density.ge.den2)then

delevO=-dvS
else ii(density.lt.den4.and.density.ge.den3)then

delevO=-dv6
else ii(density.lt.den5.and.density.ge.den4)then

delev0=-dvTI else
delevO=-dvS

end itI end if
delev~delev0

3 c---do packing, force balancing, and computing stress

call delev-.stress(dm,monop,npt ,idim,na,iprepk,ir,ist,denO,
+ iterout,inner,iter2,iter3,idistl~zero~val,ckn,ckt,cs,I + inmax,epsi,epso,epsa,irel,sigmaO~isigm,fnaverage,fnav...cur,
+ delev, ev,sstrn,strn,delxO,delyO,delzO,delx,dely,delz,mxnc,nnb,
+ r~x,y,z,xm,ym,zm~xt,yt,zt,ux~uy,uz,uxm,,uym~uzm,uxt,,uyt~uzt,
+wx,vy,vz,wxm,vym,vzm,vxt,vyt,vzt,solidv,volume,dansity,
+fnO,fnl~ftO,ftl,dfttdl,sfx,sfy,sfz,smx,smy,smz,itrial,
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+ a~b,ak,bk,adjc,kuxxkyy,kzz,nx~zny,nz,mapO~aap~nbon,kslp,kact,
+ xin,dxii~res,ort ,nuir~uappart0,mappart.
+ s~test ,sigma~stest ,error,erroruin,delovui~n,kiflag,amda)

go to 604
end if

c --- algorithm to achieve the desirad isotropic stressI

iter2=1
it er3=0
inega=1

delev~dev 1
ii(iprepk. eq.2)then

c iteroitziterout+iI
c test~siglsa-siguaO
c f-.devl~test
c if(test.lt.O.0)then

c else: ls stest:..1
c end ifI
c arror~test/sigaaO

iterout~iterou~t+ I

call delei..strses(dm,monop~npt ,idim,im, iprepk~ir. ist,den0,
"+ iterout,inner~iter23 iter3,idistl,zero,val,ckn,ckt,cs,
"+ inmax,epui,epso,epsa,irel,sigma0, isigm,fnaverage,inav-.cur,
"+ delev,ev,sstrn,strn,delxO~delyO,delzO,delx,dely,delz~mxnc,nnb,
+ r,X,y.z,xu,yu,zm,xt,yt,zt,ux~uy~uz,u"xm,Uym,uzm,uxt,uyt,uzt,

" wxvy,wz,wxm,wym,wzm,uxt,vyt ,wzt ,solidv,volume,density,
"+ fnO,fnl,ftO~ftl,dft,dl,sfx,sfy,sfz,smax,smy,smz,itrial,

"+ a,b,ak,bk,adjc,kxx~kyy,kzz,nh,ny,nz,mapO,map,nbon,kslp,kact,
"+ xn,dxn,res,orf,iiuzr,mappaz'tO~mappart,
"+ s,test,sigma,stest,error,errormin,delevmin,kflag,azuda)

if(abs~error).lt.apso)go to 604

f-dev~teI
end if
iside~stest

testO~testI

592 igo942=0
if(isideoinega. eq.-1)thenI

if(ist.le.1.or.iwent.eq. 1)then
devm-ldevul

else if Citer3.ge. 1)thenI

devu..l~delevznin-0. 0005*iter3
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else
it (is id.0. eq.0) then

devm..1devalI ~else if(isideO.eq.-1)theu
de'vm..1uaf *delev-.last

else
deva...1-all*delev..laat*4. 0

end it
end it
doelv=devu..1

iterout~iterout+1

ca~ll delev..stress(dm,monop,npt,idi.,nu, ipropk, ir, ist,denO,
+iterout, inner,iter2,iter3,idistl ,zeroval,cku,ckt,cs,
+inmax .psi, epso I pua&,irel,sigma&0, isigm,fnaverage,lnav-.cur,

+ 4.1ev, ev,sstrn,strni,delx0,delyO,delzO,delx,dely,delz,.xnc ,zmb,
+ r,x,y,z,xu,yu,zm,xt,yt,zt,ux,uy,uz,uxa,uyu,uzm,uxt~uyt~uzt,
+ wz~vy,.z,vxm,wya,vzu,wxt~vyt,wzt,solidv,volim.,donsity,
+ InO,fnl~ftO~ttl,dit,dl,ufx~ufy,sfz,suzsmuy,mmz,itrial,
+ a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,uapO,aap,nbon,kslp,kact,
+ n,dxn,reu,orf ,nuur,uappartO,mappart,
+u,test,migua,stest,error,errormin,delevmin,k~flag,amda)

if(abs(error).lt.epbo)go to 604

if(ist.le.I.or.iwezit.eq. 1)theu

ie= devm.2=devu2

else if(iter3.ge.I )then
devm-2delevuin-0. 0G00*it cr3

else
it(isideO. eq.0)then

devm-.2=devu2
else if(isideO.eq.-I)thenI ~devu..2=af2*delev..last
else

devu..2=-af2eflelev..last*4.0
end it

end it

delevzdevu.2I iterout=iterout+1

call delev...tress(du,manop,npt,idiui,nm,iprepk,ir,ist,denO,
+ iterout~inner,iter2,iter3,idistl,zero,val,ckn,ckt,cs,I + ixmax~epui,epso,epsa,irel~sigimaO,isiga~fnaverage,fnav.cur,
+ delev,e'v,sstrn,strn~delxO,delyO,delzO,delx,dely,delz,mxnc~nnb,
+ r,x,y,z,x3,y.,z3,xt,yt~zt,nx,lly,uz,uxm,uym,u23,uxt,uyt,uzt,I+ vx~wy~vz,xm,wyim,wza,wxt,vyt~wzt~solidv,valum.,density,
+ fnO,fal,ftO,ftl,dft~dl~six~sfy,sfz,smx,suy,smz~itrial,
+ a,b,ak,bk,adjc,kxx,kyy,kzz,nx,ny,nz,uapOmaap,nbon,kalp,kact,
+xn,dru zes o rf nI=r,Imappa;rtO 10appart ,
+u,test,uipna~stest,error,errormin,delevain,kflag,aada)
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it(abs(eror).lt.*pxo)go to 604

go to 791 2tet
alse

942 it(((isido.0o.l..or.errorO.lt.1.0).and-iter3.eq.0).
+ or.igo942.eq.l)thenI

devm-.2=0.0
tfi'a2ztestO

delev.=deva-1

941 iterout=iterout41

call delev-.streuu(da,aonop,upt,idia,iia,iprepk,ir, ist~denO.
+ iterout,inn~er,iter2,iter3,idistl,zero,val,ckn~ckt,cs,
+ inmax,epsi,epso,pepa,irel,siguaO,isigu,tnaverage,fnav~cur,

+ delev,ev,sstrn,strn,delx0,delyO,delz0,delx,dely,delz,uxnczmb,I
+ r,x,y,z~xu,ya,za,xt,yt,zt,uZ,uy,uz,ux3,uym, uzuUXt,Uyt,UZt,
+ vx,wy,wz~vxu,vyu,vz~a,vxtvwyt,wzt,solidv~voluue,denuity,
+ nO,fnl,ItOItl,dit,dl,stx,uiy,siz,saxsuy,smz,itrial,I

+ a,b,ak,bk,adjc,kxx,kyy,kzz,nxtnyaz,uapO,uap,nbon~kulp,kact,
+ xn,dxn,res,ori ,nuur,mappartO,uappart,
+ s,test 3sigaa,stest,error,erroruin~delevmin,kilag,aada)

it(abs(.rror).lt.epso)go to 604

T2evul~test
if(tevul .gt.feva2)theu

go to 791
else 0dv.

delev~deva.l emll.Odv-

go to 941
end it

elseI
C --------

if(iter3. eq.0)then
deva...ldelev..last/at 1

else
devm-..=delevxin/ (at 1*iter3)

end it
delev~devu..1
iterout~iterout+1

call delev..stress(da,monop,npt,idim,na, iprepk. ir, ist,deno,
"+ iterout,inner,iter2,iter3,idistl,zero~val,ckn,ckt,cs,
"+ inmax,epui,epso,epsa~irel~sigmaO~isipmtnaverage,inav-.cur,
"+ dele'u,ev,sutrn,strn,delxO~delyO,delzO,delx,dely,delz,uxnc,imb,

" wx~w~wz~v~wym ,zt,wxt.uyt,uz,nx.id,vuy.,uzmnutuyt,zt

" fnO,fnl,ItO,ftl,dft,dl~sfx,ufy,ufz,suiasays.az,itrial,

" xn~dxn,res,ort,nuar,mappartO~mappart,
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+ tetsimseteroerrideeanklg na

if(abs(error).lt..pso)go to 604

fevul=test

iI(iter3. eq. 0)then
dewm...2udelev..last/af2

else
dsvu..2=delevxin/ (a.120it er3)

end it
delevudeva_2
iteraat~iterout+l

call delev..utress(dm.monop~npt,idiu~nn.iprepk, ir,ist,denO,
+ iterout~inner,iter2,iter3bidistl~zero~val~ckn~ckt,cs,
+ ixAms epsi~opso~opsa~irel~sigm&O, isi~m.fnavera~ge~nav-.cur.
+ delev,ev,sstrn,strn~delx0,delyO,delzO,delx.dely,delz..znc,mib,
+ r 2z'y aZ' xMvyURxt syt zt lux OIY Suz IUMODUYSUM.uzm t,uyt,uzt,
+ vx,wy~wz~wxu,wya~wzm~wzt,wyt.wzt,solidv~volum.,donsity,
+ fnO~fnl~tO,ftl~dft,dlsfxz,sfy,slz,smxuuy~smz,itrial.I + a~b~ak~bk~adjc~kxx.kyy,kzz,nx,ny~nz,aapO~map,nbon,kslp~kact,
+ Xa, dxn, roe,orf, rnnar~sapparto~mappart,
+ s~test,sigua.stest,ez~or,.rroruin,delewuin,Icflag,aada)I if(ab.(.rror).lt.epso)ga to 604

fevm2test

if (fovu .gt.fevm2. and .fevml .gt. 0.Otn

else
if (testO.gt.fIevu2) then

devu..1=0.0
so to 9

else if(test0.gt.fevu1)then
fevm2=f ovm
deva.2=deva..l

fevul~teato
devm-l=0.0

go to 791

igo9421 
as

go to 942
end it

adit
c --------

end itI end if

791 i~f(fsvul*fevu2.lt.0.0)then
if (Ieval .gt .0.0)then

devladeva-.2
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de'vhzdovm-l
t-devl~tevu2
f-.devhuteval

else

devh-deva...2
f-devlztevm1
f-.devhuteva2

end it
go to 940

end it
slpk= (teval-teva2)/(deva-.l-devu..2)
it(abs(slpk) .lt .0.02)thon

it(isidesinega. eq. -I)thenI
dova1l=deva-1-0 .002
delev=devau1

iteroutmjterout+1I
it(iter2. eq. 1.and.iterout.gt.30)then

nostopl1
go to 692

end it

call delev..streus(da,uonop,npt .idiu,nm~iprepk, ir, ist,den0,
"+ iterout,inner,iter2,iter3,idistl~zero,val,ckn,ckt,cs,
"+ inaax,epsi,epso,epsa,irel,sigmaO,isiga,tnaverage~fnav-.cur,
"+ delovev,sevtrn,strn,delxO,delyO,delz0,delx~dely,delz,anC~nnb,

"4 rsx,y,zoxasyuzmxtoyt~ztguxtuyouztuxupuyu,uzu,uxt,uyt,uzt,I
"+ wx,vy,wz,wxm,.ym,wzu,wxt,vyt,uzt,solidv,volu.e,density,
"+ tn0,tnl,Itt0,tl,dtt,dl,stx,sty,stz,aux,smy,suz, itrial,
"+ a,b,ak~bk,adjc,kxx,kyy,kzz,nx,ny,nz,aap0,map,nbon,kslp,kact,
"4 xn,dxn,reu~ort ,nuur,mappartO,.appart,
"+ s ,teut ,sipma, steut ,error, errormin ,delevain ,ktflag amda)

if~abs(error).lt.epso)go, to 604

fevml~test
go to 791

elseI
if(devis...1 .. 0.0)then

devuj1=2. 0*deva...

else deva.10. 5*deva-l

end it
delev=devm..

iterout~iterout+l

it(iter2.eq. 1.and.iterout.gt.30)then
noutopl1
go to 692I

end if

call delev-.stress(da,uonop~npt ,idiz~na,iprepk,ir, ist,den0,I
"+ iterout,inner,iter2,iter3,idistl ,zerowval,ckn,ckt~cs,
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+ imma, spai, so~pe pairel,siguao. isigu~inaverag.,inav..cur,
+ delovev, c strn,strn,delxO,delyO,delzO,delx~dely ,delz ,mznc ,nb,
+ r,z,y~zh.m,y..inxt,yt,zt,ux,uy,uz,uxm,uy.,um,uxt,nyt,uzt,
+ vX&TyS wz,viu,voym, wzi,vxt vyt , ot, solidv, volume, density.

+ inofnl,ftO,ftl,dft,dl,sfx,siy,hiz, sax~say,smz,itrial,

go to 791
end if

else

iloizo
ihigh=O

dsvm..3=dev..1-fevum/slpk
if(isids*inega. eq.-1)then

it(devu..3.lt.0.0)then
delev=deva-.3

else3 ~delev=-0. 00005
edif

devm..3=delev
elseU ~ ~if (dsvi.3 .St .0.001 )devu..3=0.0005

delev~devn_.3
end it

iteroutziterout+l

if(iter2.eq. 1.and.iterout.gt.30)then
nostopz 1
go to 692

end it

call delev-.strses(du,aonop,npt .idiin~nm,iprepk,ir~ist~deno,
+ iterout,inner,itsr2,iter3,idistl ,zero~val,ckn,ckt,cs.
+ irmax,spsi,epso.epsa,irel,sigmaO,isigm,fnaverage,fnav..cur,
+ delev, ev,sstrn,strn~delxO,delyO,delzO~delx~dely,delz,mxnc ,imb,
+ r,x,y,z~xn,yu,zu,xt,yt,zt,ux,uy,uz,uma,uya~uz.,uxt~uyt,uzt,
+ .X,vY,vz,vzm~wyu,vza,wxt,wyt~vzt,solidv.volume,density,
+ fnO,fnl,ftO,itl,dft~dl,sfr,sfy,sfz,suz,smy,smz,itrial,
+ a,b~ak,bk,adjc,kxx,kyy,kzz~nx~lny,nz,aAPO,aap,nbon~kslp,kact,
+ xn,dxn,rss,orf ,numr,uappartO,aappa-rt,
+ s,test,sigma,stest~error,errorain,delevmin,kflag.aada)

if(abs(error).lt.epso)go to 604

if (test .le.0.0)then
ilovul

devl~delev
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f-devlutest3
slpku (1.va2-test)/ (davm...2-delov)

gova~atest

if(abs(slpk) .lt.O.02)then
ulpku(Uevul-teet)/ (dev....-delov)

end it
doloyade1ey-test/slpk
iteroutsiterout+l

it(iter2..q. 1.a~nd. iterout.gt.30)thon
hostOp= 1
go to 692

end if3

call delev..stress(da,Eoaop,npt ,idia,na.iprepk~i. i, t~deaO,
"+ iterout,iimer,iter2,iter3,idistl,zero,val,ckn~ckt,cs,
"+ inmax, .psi,.psooepsa,ir.1,siguaO I'isigmn~tavera~ge,fnav-.cur,I
"* dolov.ev,sstrn,strn,delxO,delyO,delzO,delx,dely~delz,.znc,mib,
"+ rox~yozsxmoyupzmItoyt~zt,ux~uy,uz,uxm~uym.u,uuxt~uyt,uzt.
"+ wx~wy,wz,wvmvya,.zu,wxt,wyt,wzt,solidv~volume,donsity,
"* fnO~fnlftO~ftl~dft.dl,sfx~sfy,afz~sax~smy~sazitrial,
"+ a,b,ak~bk~adjc~kzxxkyy,kzz,nx,ay~nz,aapO~uap~abon~kslp,kact,
"+ xn,dxn,reuozf .anuar,aappartO,uappart,

" a~t..t,sigma,stest,.rror,rrorain,delvain~kflag,azmda)I
ii(abs(error).lt.spso)go to 604

go to 9293

also
ihigh 1
devh=delev
f-devh~testI
slpk=(f .vu2-test)/ (devu..2-delov)
gvm..3=delew

delev=delev-test/slpk
iteroutuiterout+1

if(iter2. eq. 1.azid.iterout .gt.30)thenI
nostop= I
go to 692 adi

call delov-.stress(du,monop,npt~idimana, ipropk.ir. ist,den0,
" iterout,inner,iter2,iter3,idistl ,zero,val~ckn~ckt~cs,I

"+ inuax..psi,.pso,.psa~irel,uigaaO,isiga,fnaverage,faav...cur,
"* dolov,ev~ustrn,strn,delxO~delyO~delzO.delxzdely ,delz,mnmc,mub,
"+ roxtyoztz.,yamozxttyt~zt,ux,ny,uz,u13.uyu.uin,nzt~uyt~uzt.
"+ vx,wyuwz,wxm,wyu,wzu,wxt,wyt,wzt~solidv~voluae,density,
"+ faO,fal,ft0,ftl~dft,dl,sfx,sfy,siz,suz,suy,smz~itrial,
"+ a~b~ak,bk,adjc~kxxzkyy,kzz,nx .nymnz .uapO,nap,abon,kulp,kact,

"+ za~dxn ,r orn nun mappartO mappart,
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+ *,test,sigpa~ust~terror.errorabU8 d.1euaizikilag~amda)
it (&be(error). lt. epso)go to 604
go to 929

end it
929 if(tUst.0.0.O.Othen

ileumi
dovludelev
f..doylatest
if(ilovsihigh-eq.1)go to 940
slpk=(gevu3-test)/ (gevu..3-delev)
gevin.3=delev
gevu3ztest
if(abs(slpk) .lt .0.02)then

slpk= (f .va2-test)/ (demm...2-delov)
end it
delev~delev-tent/slpk
iterout=iterout+1

if(iter2.eq. 1.and.iterout.gt.30)then
nostop=1
go to 692

end it

call delev-.stress(da,aonop,npt~idiummm, iprepk. ir,ist~denO,
"+ iterout,inner,itor2,iter3,idistl,zero,val,ckn~ckt,ca,
"+ inmaa.epuieopso,pesa~irel~sigmaO.isiguu,fnaverag.,fnav-.cur,
"+ delev,ev,sstrn,strn,4elzO~delyO,dolzO,delx,doly~delz,mumc,nnb,
"+ r~x,y~z,xa,ym,z..xt,yt,Ztn,uy,iz,uxWM,UYIA,UZu.UXt,uyt,UZt,
"+ .x,vy,vz,uxm,vya~wza,vzt ,uyt,.zt .solidv,volume,donsity,
"+ in0,inl,ft0,Itl~dft,dl,sfx,afy~ufz,sax~uuy,saz,itrial,
"+ a,b,ak.bk,adjc.kxx,kyy,kzz,nx~ny,nz,mapO,iaap,nbon,kalp,kact,
"+ xn,dxn,res~or~f~numz~appart0,mappart,
"+ a ,test,sigma,stest,error,errorain,delovuin,kflag,amda)

if(abs(9rror).lt.epuo)go to 604
go to 929

else
ihigh~l
devh~delev
I-devh=test
if(ilow*ihigh.eq.1)go, to 940
31pk=(geva3-test)/ (geva..3-delov)
geva..3=delev
geva3=test
if(abs(slpk) .lt.0.02)then

slpk=(ievm2-test)/ (dev...2-d~lev)
end if
doloyndelev-test/slpk
iterout=iterout+l

if(iter2.eq. 1.and.iterout .gt.30)then
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Roatopul
go to 692

end it

call dolov-s.tress(dm~moaop~npt~idina~n, ipropk. ir, ist~doaO,
"+ iterout,inaer,iter2,itsr3,idistl,zero~val,ckn~ckt,cs.
"+ ininz, spsi, *Pao. psa, irel.siguaD, is ism. nav~rag., tnav..cur .
"* dolov,evu.stru,strn.dolxO,delyO,delzO,delz~doly,delz.mxnc nnb,
"+ r,z,y,z,xm,yum,xt~yt,zt,ux~uy,uz~ux3,uym~um,uxt,uyt~uzt,
+ vix,wy~uz,vxa.wyin,vza.xt~uyt,wzt,solidv~volune,donsity.

"+ tnO,tnl~ttO,ttl,dtt,dl,tix,sty,stz,ainx,say~su,itrial,
"+ a,b,ak,bk,adijc~kxx~kyy,kzz,ax,ny,zlz,mapO,aap,nbon,khlp~kact,
"* xi, din,res , rt ,nuar ,aappartO ,.appart,
"+ s,test,uipna~stest,error,erroruin,delevain,ktlag,auda)

it(abs(.rrox).lt.epuo)go to 604
go to 929

end if

end it

940 ddev-devh-devl
arrormin -100.0
delevain-0.0

iter2=2
do 924 iteroutal,outuax

rttlspadevl+ddev*t..devl/ (t..devl-t..devh)
it(abs(rttlap-dolevt) .lt .0.0000001)thenI

delov~rtflsp*1 .50
else

delev~rtflopI
end it
delevt~delev

call dolew...tress(da~uonop,npt~idia.nn~iprepk, ir,ist~denO,I
"+ iterout,inner,iter2,iter3,idistl ,zero,val,ckn,ckt~cs,
"+ inuax,epoi,peso,epsa,irel,sigmaO, isigm,tnaverage,tnav..cur.

"+ delev,ev,sutrn,strn,delxO,delyO~delzO,delx,dely,delz,axnc~nnb,I
"+ r,x,y,z,xa,ya,zm,xt,yt,zt,ux,uy,uz,uZ3,uyu,uzu,uxt,uyt,uzt,
"+ wx,wy,vz,wxs,u7m,vza,vxt,uyt,wzt,solid'v,volmme,density,
"+ tnO, fn1, tto,tl~dft,dl,six, sty, siz,smaz, y, sz, itrial,

"+ a,b,ak~bk,adjc,kxx,kyy,kzz,nx,ny,nz~aapO,map,nbon,kslp,kact,
"+ xn,dxn,res,or ,nuumr..appartO,ulappart,
"+ s,test ,siga,steut~orror,erroruin,delevuin,ktlag,amda)

i-f(&bs(error).lt.*pso)go to 604

ftz.teut
if(t...t.lt.0.0)then3

devl~delev
t-d~vltf-f

else

devhudelev
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f-.d~vhuf-f
end it
ddevzdewh-devl

924 continue

iter3aiter3+ j
iteroutzl
iter2=1
if(iter3.lt .2)than

go to 592
else if(iter3.eq.2.and.iside.gt.o)then

inegax-l
go to 592

else if(iter3.eq.2.arnd.iside..t.o)then
iwental
go to 592

else if(iter3.eq.3.and.louatrn.lt.2)then
go to 692

else if(iter3.eq.3.and.highstrn.lt.2)then
go to 692

else
write(99,*)'sorry, I can~not find a satisfactory delew'
write(99,e)'to balance the stress, stop! end of outloop'
stop

end it

c --- updating the position, force, mapping etc. for the next step
c --- computing and storing

604 call vec-..copy(xt,x,npt)
call vec..*copy(yt ,y~npt)
call vec-..copy(zt ,z,npt)
call vec-$,icopy(map,aapo ,npt)
call vec...icopy(aappa~rt ,mappartO,mxnc)
call rmatx-.copy (npt,npt *fn , fnO)
call ruatx3-.copy(npt,npt,du,ttl ,fto)

delxO~delx
delyO~dely
delzO~delz
dx~delxOenm
dy~delyO*nm
dz~delzO*na

ev-ev+delev
dolev..last=delev
if(delev.gt .O.0)isidse=l
if (abs (deley) .lt.1. Os-b) iuide0=0
if(delev.lt .0. )isideO=-1

if(iprepk.ge.3)then
if (abs (strn-.c) .gt. 1. Oe-8)slop=delev/strn..c
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end itI

call vec-..iinit(kphi, 12.0)
call wec-..iinit(ktheta,24.0)

c ii((iprepk.gt.1.and.ist..q.(idist2*
c +(ist/idist2))).or.kflag.eq.1)then
c call rinit2(npt,mxc, ct~px,zero)I
c call rinit2 (npt.fxc~ctpy ,zero)
c call rinit2 (npt ,Rxc,ctpz,zero)

ccall init2(npt,oxc,thn, izero)I
c call init2(npt,uxc~thkt,izero)
c end it

c do 607 imlnpt-I
c do 608 jzi+1,npt
c dl(j,i)wdl(i,j)

c 608 continueI
c 607 continue

call copyhalf(npt ,dl)I

call rinit2(dm,dx,nij ,zero)

call rinit2(npt ,npt,cond,zero)I
call vec-..init(brx,npt ,zero)
call vec-$.init(bry,npt ,zero)

call vec-..iuit(brz,npt ,zero)I

call init2 (npt, npt,ucont, 0)
call rinit2(npt ,npt ,tfor,zaro)

call rinit2(npt .npt ,tft,zero)

condxax=0.0

condmin=100 .0I

condnin2= 100 .0

avr-tn=0. 0

na'vr-.coad2=0I

do 221 np=1,npt

ih(up) =0
do 222 J-.kn~l,inub

kn--mappart(adjc(map(np) ,j-.kn))3
it(kn..q.0)go to 222

if(ifnl(np,kn).ge.-epsa)go to 222

nij (1, 1)=nij (1, 1)+rnx(np,kn)*nx(np,kn)I
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5 ~nij(1 ,2)uziij(1,2)+ai(np,kn)*ny(np~ku)
nij (1, 3)mnij (1.3)+nx(np~ku)*n~z(np~kn)
nij (2, 1)mnuij(2, 1)+ny(np~kn)*azx(np,kzi)
nij (2,2)anij(2.2)*ny(np,kn)*ny(np.kzn)U naij (2.3)mnij(2,3)+ny(iip.kn)*uz(np.kn)
nij(3, 1)anij(3. 1)+ah(Dp,kR)i'nx(np~kzI)
nij(3,2)anij (3,2)4nz(np,kn)*ny(up~ka)3 ~nij (3,3)=nij (3.3)inz(np~kn)*nz(np~kzi)

ocout (np,kn)u1

tior(up.kaL)=sqrt(fnl(np~kn)*ir2+itt16p,kn, 1)**2+
+ tl(np~kn.2)**2+itl(np.kn.3)**2)
if(abs(cs) .gt.1.Oe-5)then

tlt(np,kn)'aqrt(ftl(Dp.kn, 1)**2+
+ tl (np,kn.2)**2.itl (np,kn,3)**2)

3 kxzkxx (map (up), j...k)
ky~kyy (map(up) .j..kn)
kz~kzz (map (up), j .kn)

I ~xl=kx*na*delx+ky*tan(sstrn (2.1) )*n~m*dely+
+ kz*tan(ustru(3, 1))*nze'delz

yl~ky*na*dely+kxstan(ustru(1 .2) )*ra*delx+
+ kz*tan(sstrzL(3.2))*za*delz

14 kyt.3)r(23)n&dl
xkn-uxt(kii)-xl
ykn~yt (ka)-yl
zkn-zt(ka) -zi

3 ~call d~gree-phi~nz(np.kn) ,kphi)
call degr~ee.theta(nx(inp,kn) ,ny(np~kn) ,kthata)

3 c if((iprepk.gt.l.and.ist.eq. (idist2*
c + (iut/idist2))) .or.kilag.eq.l)then
c ih(np)-ih(np)+l
c ctpx(np,ih(np))=(r(kn)*xt(np)+r(np)*xkn)/dl(np,Iui)I c ctpy(np, ih(np))=(r(kn)*yt(np)+r(np)*ykn)/dl(np~kn)
c ctpz(np, ih(up) )(r(kn)*zt(xip)+r(np)*zkn)/di(iup,kn)
CIc end it

ii(iprepk.eq.3.or.(iprepk.le.2.and.kilag.eq.1))then

Ifreal=aba (fri (nplm*aRar)
colid(np,kn)=conbdrexp(con~k*log(freal))

3 ~avr..cond2=avr..cond2+cond(np,kn
navr..cond2unavr-.cozid2+1

3 a~vr..Iun-&vr,..inefn1(up kn)
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navr..tn-navr..frn 1

c if(kx.ne.O.or-ky.ne.O)cond(np~kn)=O.o3

ii(cond(np~kn) .gt. condwax)cond-a =cond~np,kn)
ii(cond(np,kn) .lt.condmin.and.cond(np~kn) .gt.i.Oe-20)

+ condmiu-cond(np ,kn)

brx(np)ubrx(np)-cond(np,kn)'e(xkn-x(np) )*ba~rR*grad
bry~np)=bry (np)-cond(np ~kn)* (ykn-y (np) )*baxIR*grad
brz(np)abrz(np)-cond(np,kn)*(zkn-z(np) )*baxft*grad

end it

222 continueI

221 continue

C ---------------- ---- ----- --- ----- ---- 3
if(iprepk.eq.3.or. (iprepk.le.2.azid.kflag.eq. 1))then

do 224 i1l,npt

ptm--o.oI
do 223 j1l.npt

ptm=ptm+cond(i, j)
223 continue

cond(i, i)=-ptm
224 continue

call conduct(npt,mxnc,nnb,dx~dy,dz,sstrn,x,y,z~r,I
+ nx,ny,nz cond,brx~bry,brz,cur,voltf,c-.eff,
+ cxn,cresacdxn~map,mappart~adjc,kxx,kyy,kzz,grad,ba~rR)3

writeC3O.*)ist ,hstrn..c,condmax,condmin
writeC3O,*)' ',c-.eii(1,1),c-e11(1,2),c-.eff(1,3)
write(30,*)' ',c..eff(2,1),c-.efl(2,2),c~eff(2,3)

writeC3O,*)' ',c-effC3,1),c-.eti(3,2),c-.eUC(3,3)
write(30,*)'I

c ------ computing conductivity by mean field theoryI

avr-.fn~avr-fn/real (navr-.fu)

avr~freal~abs (avr..fn*barR*barkn)I
avr-.cond-conb*exp Cconk*log (avr-.freal))

cmc=2. O*r2*r2*avr..cond/ (dx*dy*dz*barR)I

avr-cond2=avr-.cond2/real Cnavr-.cond2)

cmc2=2.O*r2*r2*avr-.cond2/(dx*dy*dz*barlL)I
,rite(30,*)' ',avr-jn,avr-.cond,avr-.cond2,cmc2*nij (3,3)

c write(30,*)' ',avr-fn,avr-.freal,avr..cond,cimc
write(30,*)' ',cmc*nij(1,1),cmc*ntij(1,2),cmc*nij(1,3)

write(30,*)' ',cmc*nij(2,1),cmc*nij(2,2),cmc*nij(2,3)



99

write(30.*)' .cac~mnij(3,I).cac*nij(3.2),cac*nij(3,3)

writo(30,*)'

end it

do 323 i1,~da
do 324 j1l,da

nij(i,j)z-nij (i,j)/(2.O*nbon)
324 continue
323 continue

c -------------------

fmaiO0.0
fuinlO0.O
finmax0.0
fnain=10.0
ftmaxO0.0
fttin=10.0

do 258 i=1,npt-1
do 259 j~i+1,npt

iIf(fnl(i,j).gt.-spsa)go to 259
if(tfor(i,j) .gt.fuax)then

fmaxztfor(iji)
imaxzi
jmax=j

end it
if(tfor(i,j) .lt.fminixthen

fmin~tfor(i,J)
imin~i
jmin~j

end it

if(abs(fno(i~j)) .gt.nmnax)Thmax~abs(fn0(i,j))
i~f(abs(fn0(i,j)) .lt.frzuin)Thzuin~abs(inO(i~j))
i~f(tft(i,j) .gt.ituax)itmax~tft(i,j)
ii(tft~i,j) .lt.ftain)ftmin~tft(i,j)

259 continue
258 continue

il(ir.eq. 1.or.kflag.eq.1)then
write(70,*)ir,ist,nbon,fnmax,injnin,-avr..fn
do 358 i1l,npt-1

do 359 j~i+1,xpt
if(fnl(i,j).gt.-epsa)go to 359

writeCTO,*)fnl(i~j)
359 continue
358 continue

end it
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if(iat-eq.idistl*(iut/idistl).or.kflag.eq.l)then

write(64,*)ir, istI
do 85s k=1,12

fraction=kphi(k)/(2.O*nbon+1 .Oe-1O)
write(64,863)k*15. O,fractjon

863 format(2x,i6,f 10.3)I

write(66,*)ir,ist
do 856 k=1,24

fractiozn=ktheta(k)/(2.0*nbonL+1.O.-iO)
write(56 .863)k*1S O,tract ion

858 Continue

c write(51,*)ir,ist
c do 689 i=1,npt
c write(51 ,57)uxt(i) ,uyt(i) ,uzt(i)
c writ.(5i5S7)vxt(i) ,wyt(i),wzt(i)

c 57 format(2x,3f15.6)
c 589 continue

if(fmin.ge.epsa.and.fmin.ne. iO.O)then
,rite(92,*)ist,' In, It'

vrite(92,*)' Smallest force: '.imin~juin, 'fmin= ',fmin
vrite(92,*)' Largest force:',imax,jmax,'fuw~x= ',fmax

write(92,*)' Smallest normal force:I,'I fnmnin= I'f ninI
write(92,e)' Largest normal force:',' fnmax= ',fnmax

c do 265 i=1,npt3
c writeC92,*)i
c do 267 j1l,npt
c if(fuO(i,j).lt.-epsa)then
c wr2.te(92,266)j ,fn0(i,j),ft0(i,j,l) ,ftO(i,j ,2) ,ftO(i,j ,3)I
c 266 format(6x,i4,4(fIS.11,1x))
c end it

c 267 continueI
c 265 continue

end it
end if

write(55,854)ir,jut ,sstrn..c,nbon,kslp,kact

854 format(2x,2i5,i12.6,3i5)

write(68,*)-sstrn-.c ,-fnaverage

write(89, *)-astrn-c ,-fnav..curI

npart=0
do 189 k1l,npt

if(map(k) .ge.l.and.map(k).le.ncell)then
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apart npart+ I
end it

189 continue

write(53,851)irjut ,npazt,uutrn..c ,delv.v
+ density,ulop,ev

851 foruat(ft,U6i5510.5)
write(S3,852).(1,1) ,u(1,2) 13(1,3)
writ.(53,852)s(2.1) ,u(2.2) (2,3)
write(S3,852)u(3,1) ,s(3,2) 3(3,3)

write(53,*)'I

write(S3,862)nij(1,1) ,nij(1,2) ,nij(1,3)
writ.(53,852)nij(2,1),nij(2,2),nij(2,3)
write(53,852)nij (3,1) ,nij(3,2) ,nij(3,3)

852 :foruat(5x,3(lx,e15.7))

c ii((ipropk.gt.1.and.iut.eq.(idist2*
c + (ist/idist2))).or.kilag.eq.l)then
c

c write(80,*)ir, ist,dalx~tnu~dely*na,delzenaa,
c + uutrn(1,2),sstrn(1,3),sstrn(2,3)
c + hutrn(2,1),hutrn(3,1),sstrn(3,2)
c do 489 i=1,npt
c write(80,339)i,r(i) ,x(i) ,y(i) ,z(i)
c 339 forinat(iS,f6.2,3(1x,fIO.5))
c 489 continue
c write CSO,*)kflag
C

c indii= (Thmax-frmin)/4. 0
c ftdif=(Itmax-Itmin)/4. 0
C

c call init2(nptuaxc~tbka,izero)
c call init2Cnpt,mxc,thkt, izero)
C

c do 702 i1l,npt
c jq=O
c do 701 j1l,npt
C

c if(fnO(i,j).gt.-Opua)go to 701
c jqljq+l
c if (abs (fndif) .le.epsa)then
C thkn(i,jq)1l
c else
c thkn(i,jq)=int( (abs(fnO(i,j))-fnain)/indii)+1
c end it
C

C ilf(abs(ttft(i,j)) .gt. epsa.and.
c + abu(iftdit).le.epsa)then
c thkt(i,jq)=l
C else if(abu(tft(i,j)).gt.epua.and.
c + abs(itdif).gt.epsa)then
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c thkt(i~jq)aint((abs(tit(i,j))-ftain)/itdil)+I
c else
c tbkt(i.jq)u0

Cc end itI

* 701 continue
* 702 continue3

c vrite(81,*)ist
c do 86 i1l,npt

c write(81,87)i,ih(i)I
c 87 format(2x,2iS)
c 86 continue3

c write(82,*)ist
c write(83o*)ist,lnaax,inain,itmax~lttin
c do 97 iul,npt

c writ*(82,88)(ctpx(i,j) ,J=l,10)3
c vrit*(82,88)(ctpy(i,j) ,J1,10)
c vrite(82,88)(ctpz(i~j),j=1,10)
c write(83,89)(thkn(i~j),J=1,10)
c vrite(83,89)(thkt(i~j),j=1,1O)
c 88 foruat(1O(lx,f6.3))
c 89 format(I0(lx,i2))
c 97 continueI
c

c end if3

c it(ipropk.gt.2)then
c close(7l1statusu'delete')

cclose(72,status'ldelete')
c open(unit=71,iile='predatl' ,status'lunknouu')
c open(unit=72,file='coordl' bstatus'lunknown')
c ivr=l

c end it

do 98 i=1,3
do 98 j=1,3I
psutrn(i,j)=sstrn(i,j)

starin(i,j)=sstrn(i,j)
if(iprepk. le.2)starin(i,j)O. 0

98 continue

doe -..la--delev-1.ast
if(iprepk.le.2)thenk

istol0O

delev-la0-.O
end if



103

ii(iprepk.eq.1.mnd.abs(sstrn(3,1)+sstrn(1,2)).lt.1.oe-e.and.
+ densityge..(densp+ndensdelden) .and.density .lt.
+ (densp+(nden+1 )*delden) )then

nden--uen+l
iwr1I

end it

c ii(kilag.eq.l.or.(ist.eq.istold+istp).or.iwr.eq.l.or.
C + (icumu.ge.i-cuu.and.ipropk.eq.1))thenL
C isr=O
c write(71,*)ir~nlO.u20,n30,pl~p2,dy,solidv~sigpa
c write(71.e)ist,istol,starin(1,l),starin(1,2).starin(1,3),
c + starin(21I),starin(2,2),stariu(2.3),
c + starin(3.1),starin(3,2),starin(3,3),evv,delov-1.a,isideO

C

c do 192 iul~upt
C ntem=O
c do 191 kal.npt
C ntemm-c~ont(i~k)*ntew
c 191 continue
c

C write (71, *) intem
c do 193 j1l,npt
c if(fnO(i,j) .lt.O.O)then
c write(71,*)JIno(i~j),fto(i.j,1)4t0O(i,J,2) ,itO(i,j ,3)
c end it
c 193 continue
c. 192 continue
C

c write(72,*)ir,ist~dx,dy,dz,na,ijsO
c do 196 i1l,npt
c write(72,*)i,r(i),x(i),y(i),z(i)
C 196 continue
c end it

C if(kflag.eq.1)go to 599
c ii(icuau.ge.i-cumu.and.ipropk.eq.O)then
C it(itrial.ge. itrialm)then
c write(99,*)'maximum number of trials to pack'
c write(99,*)'to desired density is reached, stop!'
C stop
C else
c itrial=itrial+1
C go tol199
c end it
C end it
c if(icumn.ge.i-.cumu.and.ipropk.eq.1)go to 599

598 continue

writ*(68,*) 'k'
write(69,0*e)'
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c if(iprepk.*q.2)then
c rie,)irir'* donsityc',deasity

c end it

599 coatir:.,

c---subroutine to do packing, and force balancing

subroutine dolov-..tress(d.,aonop,npt *idam,za,ipropk~ir,ist ,deno,
"+ iterout,iniier~iter2,iter3,idistl ,zero,val,ckn,ckt~cs,
"+ inma,.opoi,.puo,.psa,irel,sigmaO,isig.,inavtrage~iz-av..cur.
"+ delovev,veatrn,strn,delxO,dolyO,delzO~dolx,dely~delz,.xnc,nnb,I
"+ r~x,y,zxu,ym~in,xt,yt~zt,ux,uy,uz,ux.,uym~um,uxt~uyt,uzt,
"+ vr~wy~wz,wum,wym,wzm,wxt,wyt,wzt,solidv,volime,donsity,

+ frO,inl~itO~ttl,dit,dl,sfx,siy~siz~guuxmy,auz,itrial,
+ a,b~ak,bk~adjc~kxz~kyy,kzz,nx,ny,nzamapO,aap.nbon,kslp,kact,
+ xn,dxn ,ros * on,numr ,mappartO ,aappart,
+ u,test,sigma~stest,error,errormin,dlelvmin,kflag,amda)I

implicit real (a-h,o-z)
implicit integer (i-n)5

integer da
real x(npt),y(npt).z(npt),r(npt)
real xu(npt) ,yu(n~pt) ,zx(npt) ,xt(npt) ,yt(npt) ,zt(npt)I
real ux(npt) ,uy(npt) ,uz(npt) ,uzm(npt) .uyu(npt) ,uzm(npt)
real vz(npt) ,vy(npt) .vz(npt) ,.z(npt) ,wym(npt) ,uzm(npt)
real uxt(npt),uyt(npt),uzt(npt),wxt(npt),wyt(npt).wzt(npt)

real a~idin.,idia) ,b(idim) ,ak(6,6) .bk(6.6) .xn(idim)

real fnO(npt,npt) ,inl(npt,upt)

real itO(npt,npt,d.) ,itl(npt~npt.dm) ,dft(dn)I
real tix(npt) ,sfy(npt) ,afz(npt) ,sfx(npt) ,s37(npt) ,szaz(npt)
real mxO,myO,mzO,dl(npt~npt) ,dxn(idim)
real nx(npt ,npt) .ny(npt ,npt) ,nh(npt ,npt) ,nzxx,nyy ,nzz

real res(idi.),s(d.,dm),sstrn(3.3),strn(3.3)
c real r i.(idim),a(dm,da),sstrn(6),strn(6)

integer kxx(mxnc~nnb) ,kyy(inxnc,nnb) ,kzz(uxnc,nnb)I
integer adjc(urnc ,r:'b),map(npt),inapO(npt),stest
integer mappart (amnc),appaxtO (minc)I

ncell=na**da
cknt=ckn-ckt

c write(*.*)'step=2,ist.' out'I,iterout,' iter2=',iter2,I
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c *'iter3ul,iter3

c writo(G.*)' linner, bx, by, bz, snub, ratb. rib, &bs, stress,

c £i(ist.eq.idistl*(ist/idistl))theri
c writs(49.*)'st~p=m'ist,' * uts',jt*yout.' iter2=1.iter2,
c + iter3n'iter3
c write(49,O)' inner, bi, by. bz, snub, ratb, rib,
c 4 ribs, stress$
c end it

c --- move particles according to mean displacement

factorxustrri(1.1)
factoryzstrn(2.2)

factorz~strn(3 .3)

factorzdolev/da

do 714 i1l,rpt
uim(i)P(iactorxeiactor)*x(i).strn(2, 1)*y(i)4strn(3, 1)*z(i)
uym(i).(iactory+Eiactor)ey(i)+strn(1 ,2)*x(i)*strn(3.2)*z(i)
uzm(i)=(tactorz'Iiactor)*z(i).estrn(1,3)*x(i)estrn(2,3)*y(i)
vxm(i)-strn(2,3)-strn(3 .2)
wym(i)=strn(3, 1)-strn(1 .3)
.zm(i)-strza(1,2)-strri(2, 1)
xm(i)zr(i)+um(i)
ym(i)=y(i)+uym(i)
zK(i)-z(i)+uzm(i)
ux(i)=0.0
uy(i)0 .0
uz(i)CO.O
vx(i)=0.o
vy(i)=0.O
wz(i)=0.0

714 continue

delx~delxO* (1. 04 actorx+Iact or)
delyindelyO* (1 . +Iactory~factor)
delzzdelz0* (1 . 04'actorz+:tactor)
densitycsolidv/(ncell*delx*dely*delz)

inmaxowinmz /10
else

end it

3 ~c---iznner ioop to balance the force

iwaysi

5 inners0
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333 innerminaez+1I

call vec-*add-.vector(zuuz~apt ,xt)
call vec..Sadd-v.wctor(ym.VY~apt ,yt)
call vsc..*add-vector(zm,uz~npt .zt)

call vec-..add-.vsctor(umu,az~pt ,uzt)3
call vec-..add-.vector(uyx,uy .npt .Uyt)
call vec-..Sdd-,ector(uz.uz .npt ,uzt)

call wec-..add...vsctor(wxm~wi,npt ,vrt)I
call voc-..add-.voctor(wyp,wy,3upt .wyt)
call v~c-*add-.vsctor(wzm,vz ,npt ,wzt)

call vec-$icopy(W.mpo,upnpt)
call wec-..icopy(mappartO~uappart ,axnc)

call aappiag(upt,n.,axuc,sstra~delx~dely~dolz.
+ xt,yt,zt~sap~mappart,iauts)3

write(99.e)Oparticies fly out of the systatmw
write(99,*)ir,ist.iterout~innerI ioutsm' ,iouts

write(99. *) ist,delzenm,delyea, delznna,

+ astrn(1.1),sstru(l.2),sstrn(1,3),
+ astra(2,1),sstru(2,2),sutrn(2,3),
+ *ctrn(3,1) ,sstru(3,2).sstra(3,3)

do 334 i1l,nptI
write(99,*)i,r(i) ,xt(i) ,yt(i) ,zt(i)

334 continue
end if

end if

abfx=O.O
abfy=O.O
abfzO0.O
abinx=O.O
abmy=O.O
abuzuO.O
kelpO0
kact-O

call rinit2(npt ,npt ,fnl ,zero)
call rinit3(npt .upt ,da,ftl ,zero)
call rinit2(npt,upt,dl,val)I
call vec..*iait(sfz,npt,zero)

call vec..*init(mfy~npt ,zero)
call vec-*init(sfz,npt ,zero)I
call vec..*iait(saz~npt .zero)
call wec..*init(say~apt,zero)
call vec-..iuit(suz,npt~zaro)3
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if(inner.le-inmaxo)then
call rinit2( idim, idix, a, zero)
call vec-Sinit(b, idia~zero)

end it

abon=O
if(ivay. eq. 1)fnavera~gs0. 0

fnav..curn .0

c --- computing grand stiffness and unbalanced force vector

c --- evaluating contact forces between particle

do 21 npal,npt
knpe* (np-I)
do 22 J..knal~nnb

knummppart(a~djc(map(np) ,J..kn))
if(kn.eq.0)go to 22
if(di(np~kn).lt.I00.0.or.dl(kn.np).lt.100.O)go to 22

kx-kxx(map(np) ,j...k)
ky-kyy (sap(np) ,J...k)
kz-kzz (map (np). J .kn)

xzlkz~auodelx~ky*tan(sstrn(2, 1) )*na*dely+
+ kzitan(sstrn(3, 1))enaedelz

yluky*ua*dely~kx*tan(sstrn(1 .2) )eznadelx+
+ kz*tan(sstrn(3,2))*naedelz

zlzkzenaedelz+kxetan(sstrn(1 ,3)) *n*delx+
+ ky*tan(sstrn(2,3))*nm*dely

xknaxt (kn) -xl
yknu-yt (ka)-yl
zkn-zt (kn)-zl

412= (zkn-xt (np) ) *24 (ykn-yt (np) ) *2+
+ (zkn-zt(np))**2

if(dl2.gt.(r(np)+r(kn)+0.00I)*(r(np)*r(kn)+O.001))go to 22
41 (np~kn)zsqrt(d12)

ovlapzdl (np,kn)-r(np)-r(kn)

if(iway. eq. 2)then

cknzexp(aada.*log(abs (ovlap/:fnaverage)))
cktcO.Becku

end if

Inackneovlap
if(fn.gt . -psa)then,

go to 22
end if

fnl(np~kn)zfn
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if(ivay. eq. 1)tuaverag.=fnavera~g.+iu
fnav-.curufna:..cuz*: upkz)

ny(up~ku)-(ykn-yt(up) )/dl (npkn)
nz(up~ku)-(zku-zt(up) )/dl (np~kn)3

nyy-uy (upka)
azzauz (up, kn)

raxar (np)enix
rayar (np)*nuyy
razar (up) nzz

uxup-uxlt(up)
uynp-uyt (up)
uzupsuzt (np)
wxup-r(np)*wxt(up)I
wynp~r(np) vyt (up)

wzupur (np)*Izt (up)

uykuuuxt(kn)-(f actorxiiactor)*xl-stru(2, 1)*yl-strn(3. 1)ezl
uykn=uyt(ku)-(iactory~iactor)*yl-stru(1 .2)*xl-stru(3,2)*zl
uzku--zt (kn)-(factarz+f actor) *zl-strn(l, 3)*xl-strn(2,3) *yl
wxkn~r(ka) evxct(kn)I
wyknur(kn) evyt (kn)
wzkn=r (kn) *vzt(kn)I

uxr--uxku-uxump
uyr=uykn-uynp
uzr=uzkn-uzzp wxruwxp~wxU
vyr-wyup+wykn
wzr-vzup+wzkn

ubouunbou 1
if(abs(cs) .lt.1.Oe-8)then

itl(np,ku, 1)0.O

ttl(np,kii.3)=O.O

dit( l)ckte ((1..-nxx**2)*uxr-nxx*nyy*uyr-mx*nzz*uzr

+ -nzzevyr+nyy*vzr)
dftt(2) =ckte (-uyyenxxeuxr+ (1. -yy**2) euyr-nyyenzzeuzr

+ +nzzevxr-nxxewzr)
dft(3)rckt* (-nzz*uxx*uxr-nzz*nyy*uyr+(1. -nzz**2) *uzr5

-nyy*wxr+nxxswyr)

+ dlt(l)=dft(1);ItO(upku,1)*(l.-uxxee2)-ftO(np~kn,2)*

+ nx~nyyItO~p~kn3)*nx~nI
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dtt(2)zdUt(2)-ttO(ap~kn, 1)*uyy*nxx~ttO(np.kn,2)*(1.
+ nyyr*nyy)-I%0(up ,ku, 3)eyyeuzz

dtt(3)-dtt(3)-ttO(np.kra. )enzz*nxx-ttO(np.kn,2)*
+ nzz*nyy4tt0(np.ka. 3) *(1. -uaz*uzz)

fttuqrt(dit C )**2+dtt (2)*'.2.dtt (3)s.2)
txndft( 1)/It
ty-dtt(2)/it
tzadit(3)/it

it (abs (it) . t. epsa)ft=0 .0

ii (ft-cs*abs (i) .gt.0 .0)then
ittcs*abu (in)
itl(np~kn. 1)=it~tx
ttl(np.kn,2)ift*ty
ftl(np~kn.3)zift*tz
kslp~kulp+1

also
itl(np~kn, 1)-dft(1)
itl(np~kn.2)=dft(2)
:itl(np,kn.3)-ditt(3)
kact~kact+l

end if

end if

txzin*nxx+ftl1(np,kn. l)
fy~fn*nyy+tt1 (np~kn,2)
izctn*nzz+itl(np,kn, 3)
ii(abs(cs) .1t.i.Oa-8)then

ax0=0.O
isYO=0.O
mz0=0.0

else
axO~ray*ttl (np ,kn, 3)-raz*itl (np ,kn, 2)
ayO=raz*ttl(np,kn, 1)-rax*ttl(np.kn,3)
inzOrax*ftt(np,kn,2)-ray*ift1(np,kn, 1)

end it

sfx(np)=Bfx(np) +fx
siy(np)=siy(np)+iy
sfz(np)=utz(np)+fz
max(np)usmx(np)*axo
smy(np) =smy (np) +Uyo
mmz(np)=smz(np)+UzO

stz(kn)=siz (kn) -fx
sfy(kx)=sfy(kn)-fy
stz(kn)=sfz(kn)-tz
suz(kn) =sax (kn) +ux0'r(kn) /r(np)
smy(kL) =smy(kn)*ayO*r(kn)/r(np)
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anz(kn)=amz (kn)+uzOer(kut)/r(up)

abfxzabix~aba Ct:)
&bfyzabfy~abs (fy)
abfz=abtz+ab. (lz)
kbinzabax+abu (&xO)
&bmyuabuy+aba (ayO)

abmabmz+abs(azO)

±i(iuner.eq;(izmaazo+1))go to 22

cknt~cku-ckt

ak(1,1)=cknt~uzxxiuxx+ckt
ak(1 ,2)=cknt*uux*nyy
a~k(1 ,3)=cknti'uxx*nzz
..k(l.4)0O.oI
ak(1 ,5)=-ckt*uzz
..k(1 ,6)=ckt*nyy3

ak(2. 1)=cknt*nyy*nzx
ak(2 ,2)=(cknt*nyy*nyy+ckt)
ak(2 ,3)=cknt*nyy*nzz

ak(2.4)=ckt*nzz
ak(2,5)=O.o
ak(2, 6)=-ckt*nxxI

ak(3, 1)=cknt*xizz*nxx
ak(3 ,2)=cknt*nzz*nyy

ak(3.3)W(cknt*nzz*nzz+ckt)I
ak(3,4)=-ckt*nyy
ak(3,5)=ckt*nxx
..k(3,6)=O.o3

ak (431)=ckt* (-ray~nzz*nxx+razluyy*nxx)
ak(4,2)=-ckt*(ray*nzz*nyy+raz*(1 .O-hyy'ntyy))
ak(4,3)=ckt*(ray*(1 O-nzzonzz)+raz*nyy*zizz)
ak(4, 4)-ckt*(ray*nyy+raz*nzz)
ak(4,5)=ckt*ray*nxx
ak(4 ,6)=ckt*raz*nxx

ak(5, 1)=ckt*(raz*(1.O-nxx*nxx)+rax*uzz*zixx)
ak (6,2) ckt* (-raz*nzxxnyy+rax*n~zz*nyy)
akCS,3)=-ckt*(raz*nxx*nzz+rax*(i .O-nzz*znzz))I

ak (,5,)=-ckt* (raz*nzz+rax*nxx)

ak(5 ,6)=ckt*raz*n1yyI

ak (6,1) -ckt* (rax*nyyonzxxray* (1.O-nxx*inxx))
a~k(6,2)=ckt*(rax*(1 .O-nyy*nyy)+ray*nxxeayy)

ak (6,3) ckt* (-raxonyy*nzz+ray*nxx*nzz)



ak(6 *4)ackt*ral*nzz
ak(G.S)zekt*ray*nzz
ak(6 .6)=-ckt*(rAI*nxx+ray*nyy)

knplzkzip+1

kap3aknp+3
kap~zknp+4

knlpzknp+6
kknl~kkn+ I
kka2ckkn+2
kkn3=kkn+3
kknlzkkn+4
kkn~ukkri+S
kkn6zkkn+6 :fp)&kllkp)a(

a(knpl ,knp2)za(knpl,knp3)-ak(1,3)
a(knpl .knp3)=a(knpl .kip3)-ak(I ,4)*n)
a(knpl ,knp4)ina(knpl.knp5)+ak(1 ,5)*r(np)
a(knpl ,knpG)aa(knpl,knpS)+ak(1 ,6)*r(np)

a(knp2,knpl)=a(knp2.knpl)-ak(2.:1)
a(knp2 ,knp2)aa(knp2.kap2)-ak(2 .2)
a(knp2 .knp3W=&(kzip2.kup3)-ak(2, 3)
a(knp2.knp4)za(knp2,kn$4)+ak(2, 4)*r(np)
a(knp2 .knpS)za(kiip2.knpS)+ak(2 , )*r(np)
a(knp2 .knp6)=a(kzup2,knp6)4ak(2,6)*r(np)

a(knp3.knpl)=a(knp3,kniip)-ak(3, 1)
a(knp3 .knp2)=a(knp3 .kxip2)-ak(3 .2)
a(knp3,knp3)sa(knp3,knp3)-ak(3, 3)
a(knp3 ,knp4)=a(knp3.knp4)+ak(3 ,4)*r(np)
a(knp3 .knp5)ua(kiip3,knpS)eak(3 ,5)*r(np)
a(kiip3 .knp6)a(knp3.knp6).ak(3 , )*r(np)

a(knp4.knpl)=a(knp4,knpl)-ak(4, 1)
a(knp4.knp2)=a(knp4.knp2)-ak(4, 2)
a~knp4.knp3) .&(knp4.knp3)-ak(4 .3)
a(kiip4 .knp4) a(knp4.knp4) +ak(4 ,4)*r(np)
a(knp4 .knpi)=a(knp4,knpi)+ak(4 , )*r(np)
a~knp4, knp6Wa~(knp4 ,knp6)4ak(4.,6)*r(np)

a(kapS.knpl)ca(knp5.knpl)-ak(5, I)
a(knp5 ,knp2)=L(kflp5,k1p2)-ak(S .2)
a~kupS .kip3)=a(knpS,knp3)-ak(S .3)
a~knpi~knp4)=a(knp5.knp4)+ak(5 .4)*r(np)
a(kup5.kup5)ua(knp5.knp5)+ak(5 .5)*r(np)

a~kupS.knp6)=a(kup5,kup6)+ak(S .6)*r(np)
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a(knp6,knpl)ua(knp6.knp1)-ak(6, 1)3
a~kupO .knp2)ua(knp6,kup2)-.ak(6 .2)
a~kupO .knp3)=a(knpO~knp3) -ak(6 .3)
a(knp6.kup4)-a(kup6.knp4)+ak(6 .4)*r(np)I
a(knp .kupi)=a(knupG.knp5)4ak(6,5)*r(np)
a(knpe .kupO)a(kup6.knp6)+ak( , 6)*r(np)

a(kupl,kkul)uxak(l,l)
a(knpl .kkn2)=ak(1 .2)
a~kupl,kku3)=ak(1,3)

a(knpl .kkn4)=ak(l.4)*r(kn)I
a~kupi ,kknS)=ak(1 ,5)sr(ku)
a(knpl~kkx6)=ak(1,6)*r(kn)

a(kup2,kknl)=ak(2, 1)
a(knp2,kkn2)uak(2,2)
a(knp2,kkn3)=ak(2,3)

a(knp2 ,kkn4)=ak(2.4)*r(kn)I
a(knp2.kknS)=ak(2,5)*r(kn)
a(knp2 ,kknS)=ak(2 ,6)*r(ka)I

a~knp3,k~knl)=ak(3. 1)
a(knp3.kkn2)=ak(3,2)
a(knp3,kkn3)=ak(3,3)
a~knp3, kkn4) ak (3.4) *r(kn)
a~knp3, kkn5) =ak (3, 5) *r(kn)
a kup3, kkne) =ak (3, 6)*r (kn)

a(knp4,k~knl)=ak(4, 1)
a(knp4,kkn2)=ak(4,2)
a~knpl,kkn3)=akC4,3)
a(knp4,kkn4)=ak(4,4)*r(kn)
a(knp4,kknS)=ak(4, 5)*r(kn)
a np4, ,kkn6) =ak (4,6) *r (kn)3

a(knpS,kkul)=ak(5, 1)
a(knp5.kkn2)=ak(S.2)
a~knP5.kkn3)=akC5,3)
&(cnp5 ,kkn4)=ak(5 ,4)*r(kn)
a(knp5 ,kknS5Wak(5.5)*r(kn)
&(kupS ,kkn6)=ak(5,6)*r(kn)3

a(knp6,kknl)=ak(6,I)
a(kupS.kkn2)=ak(6,2)

a kuP6, kkn3) =ak (6, 3)I
a(kup6.kkn4)=ak(6,4)*r(kn)
a(knp6,kkuS)=ak(6,6)*r(kn)

aokupS.kku6)=ak(6,6)*r(kn)

bk( I ) =ak (1 * )
bk(I ,2)zk(1 .2)

bk(l ,3)cak(1 .3)
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bk(1 .4)--ak(i,4)
bk(,5)a-ak(185)
bk(l,6)=-ak(l,e)

bk(2.2)zak(2.2)
bk(2,3)aak(2,3)
bk(2,4)=-ak(2,4)
bk(2,6)a-ak(285)
bk(2,6)a-ak(2,S)

bk(3,1)=ak(3.1)
bk(3, 2)zak(3, 2)
bk(3,3)vak(3,3)
bk(3,4)v-ak(3,4)
bk(3,5)=-ak(3,S)
bk(3 ,6)=-ak(3.6)

bkC4, 1)-ak(4.1)*r(kxn)/r(np)
bk(4,2)=-ak(4,2)*r(kxi)/r(np)
bk(4, 3)=-ak(4,3)*r(kii)/r(up)
bk(4, 4)=ak(4 ,4) *r(kn)/r(up)
bk(4 5)-ak(4,6)*r(kn)/r(up)
bk(4, 6)ak(4 ,6)*r(kn)/r(np)

bk(S, 1)=-ak(5,1)*r(kzi)/r(np)
bk(5 ,2)W-ak(5.2)*rok.R)/r(np)
bk(5, 3)-ak(5,3)*r(ki)/r(np)
bk(S ,4)=ak(5 ,4) *r(kn)/r(np)
bk(6.6)=ak(5 ,5)*r(kn)/r(np)
bk(S56)=ak(S ,6)*r(kn)/r(np)

bk(6, 1W-ak(6.1)*r(kix)/r(np)
bk(6 12)=-ak(6,2)*r(kui)/r(np)
bk(6 ,3)=-ak(6,3)*r(kni)/r(np)
bk(6 ,4)=ak(6 ,4) *r(kn)/r(np)
bk(6, 5Wak(6 .5)*r(kri)/r(np)
bk(6 ,6)uak(6 ,6)*r(kn)/r(np)

a(kknl ,kknl)=a(kknl,kknl)-bk(1, 1)
a(kknl,kkn2)=a(kknl~kkn2)-bk(1 ,2)
a(kknl ,kkn3)=a(kknl,kkn3)-bk(1 83)

a(kknl. kkn4) a(kkul, ,kk4)+bk(1 ,4) *r~n)
a(kknl ,kkn5i)=a(kknl ,kkn5)+bk(1 ,5)*r(m)t)
a(kklml kkn6) =a(knl, ,kkne) +bk(. ,6) *r Om)

a(kkn2,kknl)=a(kkn2,kknii)-bk(2. 1)
a(kkn2 ,kkn2)=a(kkn2,kkn2)-bk(2 ,2)
a(kkn2,kkn3)=a(kkn2,kjcn3)-bk(2, 3)
a(kkn2 ,kkn4)=a(kkn25kkn4) +bk(2, 4)*r(kn)
a(kkn2 ,kknS)=a(kkn2 ,kka5)+bk(2, 5)*r(kn)
a(kkn2 ,kkn6)=a(kkn2,kkie)+bk(2 ,6)*r(kn)
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a(kkn3,kknl)=a(kkn3.kk~nl)-bk(3,I)
a(kkn3 .kka2) a(kka3,kkn2)-bk(3 ,2)
a(kkn3 ,kkn3)aa(kklL3.kkn3)-bk(3 *3)3
a(k~kn3 ,kkn4)za(kka3,kkn4).bk(3 ,4)*r(kn)
a(kkn3 ,kka5)=a(kku3,kkn5)+bk(3,5)*r(kn)
a(kkn3,kka6)ua(kka3,kkmn6)+bk(3 ,6)*r(kn)3

a~kkn4,kkal).a(kkn4,kknl)-bk(4.1)
a(kkii4,kkn2)=a(kkn4,k~kn2)-bk(4.2)
a(kkn4.kkn3)=a(kkn4,kkn3)-bk(4, 3)
a(kkn4 ,kkn4)=a(kkn4,kku4)+bk(4.4)*r(kn)
a(kkn4.kkn5)sa(kku4,kkuS)+bk(4, 5)*r(kn)
a(kkn4 ,kkn6) =a(kkn4,kkn6)+bk(4,6)*r(kz')5

a(kkin5,kknl)=a(kknE,kkn1)-bk(5, 1)
a(kkn5 ,kkn2)=a(kkn5,kkn2)-bk(5,2)

a(kkni,kkn3)=a(kkn5.kkn3)-bk(5 ,3)I
a(kkn5,kkn4)=a(kkn5,kkn4)+bk(5 .4)*r(kn)
a(kku5 ,kkn5)=a(kkn5,kka5)+bk(5, 5)*r(kh)
a(kkn5 ,kkn6)=a(kku5,kkn6)+bk(5, 6)*rokn)

a(kki6.kknl)=a(kkn6,kknl)-bk(6, 1)
a(kkn6.kkn2)=a(kknO,kkn )-bk(O.2)
a(kku6,kkn3)=a(kkn6,kkn3)-bk(6 33)U
a(kkn6 ,kkn4) =a(kka6 ,kk4).bk(6 ,4)*r(kn)

a(kkn6 ,kkn5)=a(kkue,kkn5)4bk(6 ,5)*r(ku)

a(kkn8 ,kkzn8)=a(kkn6,kkii6)+bk(6,6)*r(kIm)I

a(kknl ,knpl)=bk(1,1)
a(kknl .knp2)=bk(1,2)
a(kknl ,knp3)=bk(1,3)I
a(kknl ,)mp4)=bk(1,4)*r(np)

a(kknl .knpg)=bk(1,5)*r(np)

a(kknl ,knpo)=bk(1,6)*r(np)

a(kkn2,knpl)=bk(2, 1)
a(kkn2 ,knp2) =bk(2. 2)
a(kkn2 ,knp3)=bk(2,3)
a(kla2,knp4)=bk(2,4)*r(np)
a(kkn2 ,knpS) bk(2 5) *r(np)I
a(kkn2 ,knp6)-bk(2,6)*r(np)

a(kkn3,knpi)=bk(3, 1)
a(kkn3,knp2)=bk(3.2)
a(kkn3,kup3)=bk(3,3)
a(kkn3,knp4)=bk(3,4)*r(np)
a(kkn3 ,knp5)=bk(3,6)*r(np)
a(kkn3,knpe)=bk(3, 6)*r(np)I

a(kkn4,knpl)=bk(4,1)

a(kkn4,knp2)=bk(4, 2)I



a(kkn4,knp3)zbk(4,3)
&(kka4 ,knpl) .bk(4.4) *r(np)
a(kkn4 ,knp5)=bk(4,S)*r(np)

a(kkn4 ,knp6) zbk(4, 6) *z(np)

a(kkn5.knpl)=bk(5, 1)
a(kknS~knp2)zbk(5,2)
a(kknSknp3)zbk(6,3)

a(kkn5. knpl) =bk(5 .4)*r(np)
a(kknS~knpg)zbk(6.5)*r(np)
a(kkn5.knp6)=bk(S,6)*r(np)

a(kknSeknpl)=bk(Sl)
a(kkn6 ,knp2)ubk(6,2)
a(kkn6,)np3)=bk(6,3)
a(kkn6 .knp4)=bk(6,4)*r(np)
a(kkn6 ,knp5)=bk(6, 5)*r(np)
a(kkn6 ,knp6) =bk(6.*6) *r(np)

b(knpl)=b(knpl)-tx
b(kap2)=b(knp2)-fy
b(knp3) .b(knp3) -Iz
b(lnp4)=b(knp4)-mxO
b (knp5)zb CknpS) -my0

b(knpo) =b(knp6) -uzO

b(kknl)=b(kknl)+fx
b (kkn2)zb (kkzi2) +fy
b(kkn3)=b(kkn3)+Iz
b(kkn4) b(kkn4)-mxo*r(kn)/r(np)
b(kknS)=b(kknS)-myO*r(in)/r(np)
b(kkn6) b(kkn6) -mz0*r(kn) /r(np)

22 continue
21 continue

gumb=0.0
do 804 i1l,npt

iitp6e*(i-i)
sunb=suab+abs(b(iitp+1) )+abs(b(iitp+2))+abu(b~iitp+3))

804 continue

if(inner.eq. 1)then
suuabl=sumb
ratb=1.0
psumbS~sumb

end it

if(mod(inner,) . eq. 0)then
ratb~abs (psumbS-suab) /uumbl
pslmb5S~sumb

end it
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: f x=vec-$.asua(sfx ,npt)
ssfymVec...*sUa(sfy .upt)

*sfz-wec..*aaua(ofz npt)I
uSaxuVec.*a~suA(sux .upt)
sxzymvec-$.asum(sy.y npt)
ssaz~vec...asua(suz .npt)3

rtx-O.0
rtyO0.0
rtz=0.0

rtmz=O.O

if (abf z.ne .0 .)rtxzusfz/(2 .0*abfz)

if (abax no.0 .O)rtux~sina/(2. 0*abmz)I
i~f(abay .ne.0.0)rtmx=ssuy/(2.0*abmy)
if(abaz .ne. 0.0)ztuzmssaz/(2 .Ooabmz)

volua~uncell*delx*dely*delz
if(aod(inn~r,5) .eq.0)then

call sterss(da,npt,aonop,epsa,nxny,nz,fnlfitl,r3
+,voluae,s ,signa,0, isign)

end it

c write(6,48)inner,rtx,rty,rtz,sumb,ratb,nbon,kolp,sigma
C if(ist ..q.idistl*(ist/idistl))then
C write(49,48)inner,rtx,rty,rtz ,suab,ratb,nbon~kulp,sigma
C 48 format(Sx,iS,3f8.3,2i10.5,2i5,f12.8)

C and it

if(iprepk.le.1)then
if(inner.ge. 10.and.sigaa.1t.sigmaO)1fl=1
if(inner.ge.10.and.(rtx+rty+rtz).lt.0.03)1f1=1

alseo
it(cs..e.0.0)then

if(sumb.1t.epsi*0.5.or.ratb.lt.epui*0.5.or.(rtx~rty+rtz+
+ rtax+rtay+rtaz) .1t.0.42)111=1

else
if(sumb.lt.epsi.or.ratb.lt.epsi.or.(rtx+rty+rtz) .lt.

+ 0.21)111=1

end ift
if(sigaa.1t.0.5*siguaO.and.inner.ge.10)lfl=I

end it
if(iuner.gt .inaaxo)lf 1:1

it(111.eq.0)then

go to 666

else
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it (ivay. sq. 2.or. &10 (suda ilt.O0.OOOO1)then

cknol.O0
ckt=O. 8

fnav-.curafnaav.cur/real(abon)

c vrite(s,e) fziavereg' fnaverage
c write(e.*)'ta~av..cux',fuavour

go to 888
else

iway=2
frnaverageminaaerage/real (abon)
fuav..ciarafzxav.cur/real(abon)

innerl1
go to 333

end it
and it

666 if(iprepk.gt.1.aad.sigma.lt.o.s*sigmao.and.mod(inner,S).eq.o)thtn
go to 814

and it

ii(ipropk.le.1 .and.donsity.lt.O.5)then
*psdo~epsi*1O. 0
irelouireleO .5

else
epodoxopoi
irelocirel

end if

c --- solving the quasi-linear system of equations

call relax(idiz~npt,irelo~epsdo~orl,a,b,xn,niur,res,
+ dxnix, t, iterout inner)

c --- updating the fluctuation displacement

do 382 it.1-,npt
ktw-3*(dm-I)*(itsi-1)
ux(itm)=-ux(it.)+xn(ktz+1)
uy (ita) -uy (ita) +xn(ktma2)
uz(itm)=-uz(itm)+xnL(ktx+3)
vx(itm)-vx(itm)+xn(kta+4)
WY (itm) =vy (itm) +xn(ktm+S)
v ( itm)=vz(itm)+xn(ktm+G)

382 coný==')

go to 333

c --- once force balance is achieved, computing the stress
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683 call streaa(da~npt~monop,.psa~anxny.uz,tnl.itl.r3
+ ,volune.s.sigaia~lisip)

c it(iat..q.idiatle(iat/idistl))then3
c write(49,47)inner~rtx,rty~rtz~rtmx,rtay,rtmz,nbon,kslp.aipia
c 47' format(1xi14,6f8.2.2iS.f10.7)
c and if

c write (98,649) ist,itorout ,inner,nuar,rtz, rty. rtz, rtmx~rtmy, rtaz
c 649 tormat(3x,3i5,i7,6t8.3)I

814 testuaigma.-aiga0
it(teat .lt.0.0)thon

ateats-13

atest=1
end if

arrorat est/asigmao

it(iter2.eq.2.and.abs(error).lt.erroruln)then
delevainmdeley
errormin-aba (error)

end if

c wrte:0,61)i~in~iteoutstet~srn(.3I
c + error,delev,ov,density

if(iprepk.le. 1)then

+ so denaity.' ,denaity
else it(iprepk.eq.2)then

c write(*,e)'I ama relaxing the atresa. please wait.'
end if

write(*,601)ir~ist~iterout.ateat,test,error,delev~ev,density~iaigm
601 toruat(i3,iS,2i3t1l2.9,tlO.6,t13.9,2fl0.6,iS)3

c ---check if packing criteria are net or not

it(iprepk.le. 1.and.denaity.gt.denO.and. arror.le.epao.3
+ and.aba(aatrn(3,i).aatrn(1,2)).lt.1.0a-8)ktlag=1

return
andI

C ---------- ------------ ------------- ---- --------- -- -

c---mapping particles into microcell coordinate system5

subroutine mapping(npt~num~ixnc~aatrn,delx,dely,delz,x,y,z,map,
+ mappart,iouta)

implicit real (a-h ,o-z)I
implicit integer (i-n)

real aatrn(3,3),x(npt),y(npt),z(npt),delx,dely,delz,dx~dy,dz
integer map(npt) ,uappart(mxnc) gumI
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dxszoal(u) Od*3lI
dyuzeal (=r) ede~y
dz~zeal (nn) Oded
iout a .

call vec.SiiAit(Uappart .Wmc.O)

do 1 iml,apt

zoiaatan(metzu(2, 1))*y(i)4taa(sstrn(3, 0))eWOi
it(zMi) .g..ziA)thea

else
Uxuint((xWi-zmin)/dz)-1

*ad it

ymiautanasutra(1 ,2))*z(i)4tanaustra(3,2)).z(i)
if(y(i) .ge.yxin)th~a

my-lat ((y(i)-yuia)/dy)
else

xymint ((y(i)-ymia)/dy)-1
end it

zmia-tan(satra(1 .3))ex(i)+tma(astrn(2,3))aOy(i)
if(z(i) .g..zmia)then

xz-in%((z(i)-zxmin)/dz)
else

and it

x(i)ux(i)-rnxadx-myotea(sstrn(2.1))*dy-.z~tan(ustrn(3, 1))*dz

x(i)-z(i)-mz~dx-mzoten(hstrn(1,3))*dx-myetan(s.trn(2,3))*dy

xmlnutaa(sstra(2,1))*y(i)etan(astrn(3, 1))*z(i)
yuiu-tan(.utrn(1 ,2))*x(i)*tan(sstrn(3,2))*z(i)
zminutan(sstrn(1 ,3))*x(i)4tan(sstrn(2,3))Iy(i)

kb~int(C(z(i)-3min)/delz)i.1
if(kb.eq.am+I)kbzum
jb-int( (y(i)-ymin)/d~ly) +1
if(jb. .q.n41)jbu'm
lb-int C(x(i)-zmmn)/dslz)+1
it(ib. sq. aae1) ib--um
ibarzib4(jb-1) eume(kb-I)*ounam

it(abs(mx) .g..2.and.abs(uy) .ge.2.azid.abu(mz).g..2)then
writs(*,*)'particle '.1.' is located outside'
write(*,*) 'kb,jb~ib,na,ibars l.kb,jb,ib,nu,ibar
loutsuiouts+1

end it
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map( 1) ibar
sappart (ibar)-i

1 cont inue

return
end3

c--computing nicrocell adjacency matrix and "kxx,kyy,kzz'

subroutine adj3(amnc,ijs,uaa,nnb~adjc,kxx.kyy~kzz)3
implicit real (a-h,o-z)
implicit integer (i-n)

integer &djc(mxnc,nnb)I
integer kxx(mnc .nnb) .kyy(inxc .nnb) ,kzz(mxcnc Rnb)

do 60 ksl,nu
do 50 juI,na
do 40 ial~as

klai+(J-I)*na4(k-l)ena*naI
indexxO
do 31 kkak-ijs,k~ijs

it(kk.lt. 1)then3
kzwl

else it(kk.gt.nm)then

else5
kz=O

end it
kkbarakk+kz*ua

do 35 kjuj-ijs,j+ijs
it(kj It. I)then3

kyal
else ii(kj .gt .ua)then

ky-1
else

ky=O
end if
kjbarzkj+ky*na

do 30 kini-ijs~i~ijs
if(ki.1t. I)then

else it(ki.gt.nu)then

kx=01

end it
kibaraki+kx*na
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k2ukibar.(kjbar-1) *um.(kkbar-i )umaua
it(kl.eq.k2)go to 30

sAJc(kl .indez)wk2
kxx(kl~indoz)nkx
kyy(kl. indez)uky
kzz(kl *iadez)ukz

30 continue
35 continue
31 continue
40 continue
so continue
60 continue

return
end

c--linear equation solver

subroutine relax(idim,npr~irel,pepd,orf,a,b~imnnr,res.dxn,
+ ist,iout,inn)
implicit real (a-h~o-z)
implicit integer (i-n)

real a~idim, idim) ,b(idim) ,res(idim) ,dxn(idin) ,zn(idiU)

zoro=0. 0
call vec..*init(mn,idia zero)
call vec-S.init(dxn, idia,zero)
call vec-.Sinit(res, idim, zero)

inun=0
100 inuKzinuU+l

rmx=0. 0
imazzO

resus-0.0
it (inua gt .1)then

do 22 ili~idim
if(abs(a(i~jmaz)).lt.1.oe-1o)go to 21
res(i)=res(i)+a(i, jmmx)edmn(jmax)

21 resum-resum+abs(res Ci))
if(*bs(res(i)) .gt.rmax)then

rmax-abs(res(i))
imax-i

end it
22 continue

also
do 20 iml,idin

if(&bs(b(i)).lt.1.0e-12)go to 20
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rernawresua+abs (roes(i))
iir(abs(res(i)) .gt-rmaa)thsn

rinax-abs(ros(i))

20 continue3
resuai resum
premumSOarenma

end it3

dxn(Jmax) --rem (maax) /a(iaax. jmx=)
xu(Jz=ax~ux(Jua)+dxn(JmaI)

if(mod(inum.S0) .eq.0)then
rat iSOabs (proaunSO-rosum) /resuaI
presumBioresum
it(ratiSO.gt.epsd.and.inum..t.irel)go to 1003

return
end it
go to 1005

end

c --- shuttling algorithm

subroutine shuttle (ncell,nushut, Illip, nrit, is eed,a, al, kI,k2)3

implicit real (a-h~o-z)
implicit integer (i-n)5

integer auneall) ,al(ncell) ,kl(ncell) ,k2(ncell)

do 65 i=1,ncell3

U1(i)u0
kl(i)=0
k2(i)=0

65 continue

nceluncell/2I
nce2-ncell-ncel

do 100 JialI,nshuf

do 105 ltal.ltlip
aidnint (ran( is eed) *ncell)

do 102 i1l,ncell
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it(i.le.ncell-nid)then
.1(i)=u(midei)

else
ml (i) m(i-ncell+uid)

end it
102 conatinue

call vec_$icopy(al .n,ncell)
106 continue

do 500 jrml,nrif
do 110 iul,ncel

ki(i)mu(i)
110 continue

do 120 im1,nce2
k2(i) a(ncelii)

120 continue

do 130 i=nce2,1,-1
n(2ei-1)=k2(i)

130 continue
do 140 iancel,1,-1

a(2*i)=kl(i)
140 continue
o00 continue

100 continue
return
end

c---initialization of a real 2D array

subroutine rinit2(irowicol,a,value)

real a(irow,icol),value

do 5 j=1,icol
do 10 i=1,irow

a(i,j)=value
10 continue
5 continue

return
end

c -----------------------------------------

c---initialization of a real 3D array

subroutine rinit3(irov,icol,lay,a,value)

real a(irov,icol,lay),value

do 15 lal.lay
do 5 j1l,icol
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do 10 ialirov U
a(i.j 81)*vlue

10 continue
6 continue
15 continue

return
end

c---inlitialization of an integer 2D array

subroutine init2(iroaicolia,value) 3
integer ia(irow,icol),value

do 5 julicol
do 10 i=1,irow

ia(i.j)=value
10 continue
1 continue

return
end

C --------- -------------------- -- -

c---copy from one integer 2D array to another

subroutine matx.copy(irowicoliu,iv)

integer iu(irow,icol),iv(irovicol) 3
do 5 j=l,icol

do 10 i=1,irov
iv(ij)=iu(i.j)

10 continue
5 continue

return

end
C----------------------

c---copy from one real 2D array to another 3
subroutine rmatx-copy(irow, icol,u,v)

real u(irowuicol),v(irowicol) 3
do 5 j=licol

do 10 i=l,irow 3
v(ij)=u(i, j)

10 continue
5 continue

return I
end

C ----------- ---- --- ----- ---- --- - ------ -

c--copy from one real 3D array to another I
U
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subroutine rmatx3..copy(irow,icol~lay,1i.v)

real u(irow~icol~lay).v(irow.icol.lay)

do 15 lul~lay
do 5 jul,icol

do 10 ial~irow
v(i,J .l)uu(i~j 1)

10 continuie
5 continue
1S continue

return
end

c ------------- - ---- -- --------

c--subroutine to choose radii randomly for poly-disperse system

subroutine r-.assign(nl,n2,n3,nlO,n20,n30,rl,r2,r3,pl,p2,iueed,r)

implicit real (a-h~o-z)
implicit integer (i-n)

if((nl.lt.nlO).and. (n2.lt.n20).and. (n3.lt.n30))then
ratwan(issed)
it(ra.lt.pl)then

rurl
nl-nl+1

else ii((ra.gt.pl).and.(ra.lt.p2))then
r~r2
n2-n2+1

else
r~r3
n3-n3+1

end it
else if((n2.lt.n20).and.(n3.lt.n30))then

ra~ran(iseed)
if(ra.lt. (p2-pl)/(1 .O-pl))then

r~r2
n2-n2+ 1

else
rcr3
n3--n3+1

end if
else if((nl.lt.nlO).and.(n2.lt.n20))thenL

ra-ran(issed)
if(ra.it .pI/p2)then

runI
nl-nl+ I

else
r~r2
n2-n2+1

end it
else if((nl.lc.nlO).and.(n3.lc.n30))then
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rauran( iseed)I
if(ra.lt.p1/(1 .O-p2.p1))then

rarl
nlznl+ 1

r=r3I
n3an3+1

eleif(n2.lt.n20)then

r~r2

n2--i2+1
alse

r~rl3

end it
end it

return
end

c --- calculating stress tensor

subroutine stress(dn,npt,monop,pesa~nx,ny,uz,fnl,ftl,r.
+ volume.9,signa,ioori,isign)

implicit real (a-h,o-z)3
implicit integer U -n)

integer dm
real nx(npt,npt) ,ny(npt~npt) ,nz(npt,npt) ,Izl(npt,npt)I
real nxx,nyy,nzz~r(npt),ftl~nptnupt,dm),s(dm,clm)

do 877 i~l~npt-I
do 875 j3i41,npt

nx(j ,i)=-nx(i,j)
ny(j ,i)=-ny(i~j)
nz(j ,i)=-nz(i~j)3
fni(j ,i)=fnl(i,j)

do 874 k1I,dm

874 continue ftl(j ,i,k)=-ftI(i~j ,k)I
875 continue
877 continue 877 cntinu

do 10 i=I,da
do 15 j1I,dm3

s80,0)=O.0
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1s continue
10 continue

if(sonop.eq.01thon
do 121 npul~npt-1

do 122 knu-p+1,npt
if(fnI(np,kn).ge.-epsa)go to 122
nnxxnx(np. kn)
nyy~ny(up~kn)
azz=nz (up, kn)

tnlxitnl (np,kn) *nxx
fnlyifnl(np,kn)*nyy
tnlz=inl(np ,kn)*nzz

s(1, 1)=s(1,1)+r(np)*nxx*(fnlx+itl(np,kn,1))
s(2.2)=s(2,2)4.r(np)*nyy*(ifnly+itl(np,kn,2))
s(3, 3)=.(3 ,3)+r(np)*nzz*(inlz~itl (np~kn, 3))

if(iOorl eq. 1)then
s(1,2)=s(1,2)+r(zip)*nxx*(fnly+itl(np,kn,2))
s(1,3)=u(1,3)4r(np)*nxx*(inlz+itl(np~kn,3))
s(2,1)=s(2,1)+r(np)*nyy*(tnlx+itl(np,kn,1))

s(2,3)=s(2.3)+r(np)*nyy*(Inlz+itl(np,kn,3))
u(3,1)=sC3,1)+r(np)*nzz*(fnlx+itl(np,kn, 1))
s(3, 2)=s(3 ,2)+r(np)*nhz*(inly~itl (np ,kn, 2))

end if

122 continue

121 continue

else
do 721 np~l,npt

do 722 kn~l,npt
if(fnl(np,kn).ge.-epsa.or.np.eq.kn)go to 722
nxrx u(np, kn)
nyy=ny (up, u)
nzz~nz (p. 1w)

tnlx~fnl (np,kn)*uxx
fnly~fnl (np,kn)*nyy
fnlztnl (up, 1) *nzz

mCI, 1)=s(1,1)+r(np)*nxx*(inlx+itl(up,kn,1))
a(2,2)=s(2,2)+r(np)*nyy*(frnly+:ttl(up,kn,2))
s(3,3)=s(3,3)+r(np)*nzz*(inlz+itl(np,kn,3))

if(iOorl.eq. 1)then
s(1,2)=u(1 ,2)+r(np)*nxz*(finy+ftl(up,kn,2))

s(2,1)=s(2, 1)+r(np)*nyy*(fnlz+itl(np,kn, 1))
s(2,3)=s(2,1)+r(np)*nyy*(inlz+ftl(np,kn,3))
s(23 )=s(23, )+r(np)*nyy*(inlx+ftl(np,kn, 1))
s(3,2)=s(3,2)+r(np)*uzz*(fnlx+ftl(np,kn,2))

end it
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722 cntinu
722 continue

end it

do 20 izl~da
do 25 jinl~dz

ii(monop..q.1)s(j,i)=2.Oss(j ,i)/volume
ii(monop..q.2)s(j,i)=s(j ,i)/volume

25 continueI
20 continue

ii (imigm..eq. 2)then3
higna.=-(s(1 ,1).s(2,2))/2.0

else
sigma=-(s(1,1)+s(2,2)+s(3,3))*0.333333

end if

return

c ------------ ---en -I- - - ---

subroutine conduct(npt ,uxnc,nnib,dx~dy,dz,astrn,x,y,z,r,
" nx~ny,nz,cond,brx,bry~brz,cur,valtf,c-.eff,I

"+ czn,cres,cdxn,uap,mappart,adjc,kxx,kyy,kzz,grad~barR)

real sstrn(3,3) ,x(npt) ,y(npt),z(npt) ,r(npt)I
real ux~uptunpt) .ny(npt,npt) ,nz(npt,npt)
real cond(npt apt) .brx(npt) ,bry(npt) ,brz(npt)
real cur~aptanpt) .voltf(npt) ,c-.efl(3,3)I
real cxn(npt) ,cres~npt) ,cdxn(npt)
integer map(npt) ,kxx(uxnc,nnb) ,kyy(mxnc,nnb) ,kzz(uxnc,nnb)
integer adi c (uxnc ,ib) ,sappart (mxnc)3

call rinit2(3,3c..eff,O.O)

call relax-v(npt ,cond,brr,cxn, cres, cdxn)3
call vec..*copy(cxn,voltf apt)

c write(60,*)ir,ist,' Vi

fxO0.O

I y=O.O

do 41 np~l,npt
c sum=0.0

do 42 J..kn~l,nnb3

kn--mappart(adjc(mmp(np) ,j..h))
if(kn.eq.0)go to 42

cur~npkn)=OI
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3 ii(abs(cond(np~kii)).lt.l.oe.-15.or.ntp.eq.kn)go to 42

hl-kxx(map(np) .J.kn).dzx~kyy(aap(np) j-.kn)*tan(sctrn(2. 1))*dy3 + +kzz(utap(np) ,j..kn)*tan(sstra(3,1))*dz

xkn-z(ka)-xl
ciar(np.kn)ucond(np~kn)*((x(np)-xkn)*barftegradU+ *voltf(up)-voltf(kn))

c write(58.*)ciir(np~kn)
c summzusm4cur(up ,kn)3 ~txaix+r(n~p) ebarRenx(np,kn)*cur(np .kn)

fy--fy+r(ap) ebarR~ny(np~kn)*cur(np .kn)
fzciz+r(up) ebarR~'nz (up. k) cur(np, kn)

42 continueIc write(60.*)np~sum

41 continue

I fxi-x/ (dx*dy*dz*barR*barR*barR)
fyuity/ (di*dysdz*barR*barft*baxft)
tzi-z/(dx*dy*dzebarR*barR*barR)

3 ~ ~call relax-.v (npt, cond, bry, cn, cres, cdxii)
call vec-..copy(cxn~volti ,npt)

c write(60,e)ir,ist,' ys

f1=0.0
TyO .0
fz=0.0I do 51 np=l,npt

c sua=O.03 ~do 52 J-.kn=l,nnb

kna-appart(adjc(uap(np) .j..ka))

it(kn..q.0)go to 52

ii(abs(cond(np,kn)).lt.1.0.-15.or.np.eq.kn)go to 52

yl=kyy(map~np) ,j..kn)*dy~kxx(aiap(np) ,j-.kn)*tan(sutrn(1 ,2))Wdx
+ *kzz(aap(np) ,j-.kn)*tazi(setrn(3,2))*dz

3ykn=y (kn) -yl yn*aRgd
cur(np,kn)=cond(np,kn)*((y(ap)-yn*aRga

+ +voltf (up) -volti (kn))
c suna=.umicnr(np~kn)I 1 xi-x+r(np) *barR*nx(np,kn) scur(np,ka)

:fy-iy~r(np) *barR*ny (np,kn) *cur (np, kn)
Iz--iz+r (np) *barR*nz(up,kn) 'cur (upkn)

6 2 continue
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c writs(60, *)UP, sum3
51 continue

tf-z/ (dx*dyodz*barR~barlobarl)1
:fysiy/ (dx*dy*dzobarR*barRobarR)
tzfz/il(dx*dy*dzobarRebarli'barR)
c...ft(2,1)=-fx
c....i(2,2)=-fy3
c..eii(2, 3)=-fz

call relax-.v(npt ,coud,brz, cxiicres, cdxii)
call voc-..copy(cxn,volti .apt)

c vrit.(60,*)ir~int,' Z'

fxO .0
ty=0 .0
fzuO.03

c c..top=0.0
c c..bot=0.0

do 61 np~l,upt
c sunmUO.0

do 62 J-.knul,nnb3

knm-appart (ad c (.ap (up), j .kn))
it(kn.sq.0)go to 623

cur(np~ku)0O.0
ii(abs(cond(up,ku)).lt.1.O.-15.or.np..q.ku)go to 623

zl=kzz(map(nxp) ,j-ki)*dz+kxx(map(up) ,j..kn)*tau(sstnn(1,3))*dx
+ +kyy (map (up) ,j-.k)*tan(.mtrn(2,3))*dy

zkuz (kn) -zi
cur(np,ku)=coud(np,ku)*( (Z(np)-zkn)*barR*grad

+ +volt (np) -volti (kn))

c ----------- -
c iif(kzz(map(np) ,map(ku)) ..q. 1)c.top=c-.top+cux(up,kn)
c iif(kzz(map(up) ,map(kn)) .eq.-1)c..bot=c-.bot+cur(np,ku)
C -------------

c ii(up.le.10)write(60,*)np,ku,cur(up,kn)
c sum=suaacur(up ,kn)

ixi-x~r (up) *barR*ux (up,ku) cux (up, ku)
iyi-y'r (up) *barRuny(up, ku)*cur (up, ku)I
fz=iz+r(up) *barR*uz(upp~ku) cur(up ,kn)

62 continue

c write(60,e)up.sumI

c wxit.(59.,*)z(up) ,z(up)*gradp+voltf (up)

61 continueI



ixu iz/ (dx*dy dzt*b ar ft*bar ft*bar l)13

tyuty/ (dxs'dy~dzebarl*barRsbara)
iEzxtz/ (dxm'dy*dz*barft*barltsbarft)
c..eli(3,1)=-fx

c-.eft(3,2)u-fy

c vrit*(9S, *)c-.top, c-bot
c write (95. *)dz*barRec-.toP/(dx*barR*dy*barR*gracI*dz~bara)
c write(95,*)c-.eff(3,3)

C --------

return
end

c--linear equation solver

subroutine relaz..v(npt .cond,br,cxn~cres ,cdxii)
implicit real (a-h,o-z)
implicit integer (i-n)

real cand(npt,npt) .br(npt) ,czn(npt) .cres(npt) ,cdxn(npt)

zeroO0.O
call vec-..init(cxn,upt ,zero)
call vec_$.init(cdxn,npt,zero)
call vec-$.init(cres .npt zero)

inum=-0
100 inum~inun+1

rsax=0. 0
imax=O
cresum=0. 0
if(inua.gt.01then

do 22 i1l,npt
if(abs(cond(i~jmax)).lt.1.oe-I5)go to 21
cres (i)=cres (i)+cond(i *jmax) *cdxn(Jmax)

21 cresunm-cresum~abs (cres Ci))
iif(abs(cres(i)) .gt.rmax)then

rmazzabs(cres(j))
imax~i

end it
22 continue

else
do 20 iul~npt

if(br(i).eq.0.O)go to 20
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cresuuucresua~abs(cres(i))
ii(ab*(creu(i)) .gt.rinai)then3

ramxabs(cres(j))
iaaxui

end it
20 continue3

cresualucresam
end it

jmax=imax

cdxn(jmaz)=-crea (inax)/cond( iwax jmax)

cxn(jma~x)mcxn(jmax) +cdxn(jmax)I

if(cresum.gt.cresual*0.00001.and.inum.lt.10000)go to 100
c write(60,*) 'cresual ,cres=,inum' ,creaial,cresum,inum3

return
end3

S----- --------- ---- ------------- ------

c --- copy one hall of a 2D array(above diagnol) to another hall

subroutine copyhaif (irov,ui)I

real u(irow~irow)3

do 5 i1I,irow-1
do 10 j~i+1,irow u~j~i)U~i~I

10 continue
5 continue

return

end

C------------ --- ---- -------- ----- ------- ---- -----

subroutine degree-.phi(nz ,kphi)
implicit real (a-h,o-z)

implicit integer (i-n)

real ni
integer kphi(12)3

dnz=0. 1666667
it(nz.gt.0.0)then

k6O-int (nz/dziz)I
else

k=-int (nz/dnz) .7
end if

kphi(k)=kphi(k)+1
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subroutine d*gre*-.theta(nzzx any ktheta)
implicit real (a-h,o-z)U implicit integer (i-n)

real ux,ny~nnx~nny3 integer ktheta(24)

pi=3. 141593

I ~nlunx/sqrt (nnxennx+nnyenny)
nywnny/#qrt (meu~nx+zmyenny)

U if(ny.g*.0.0)then
if (ax. ge.0. 0)then

theta-asin(abs(iiy))
elseI thetampi-asin(abs(ny))
end it

else
if(nx.ge.0.0)tben

theta-2 . Opi-asin~ab. (ny))

else*
theta~pi~asia(absm(ny))anIi

end it

I ~theta. (theta/pi)*180 .0
kmint (theta/iS. 0)+i3 ~ktheta(k) =ktheta(k) +1

return
end
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